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truck ✗ Attention

[Selvaraju, et al., ICCV, 2017]
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[Smilkov, et al., arXiv, 2017][Selvaraju, et al., ICCV, 2017]
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https://cs.stanford.edu/people/karpathy/cnnembed/
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Scalably summarize and interactively visualize 
neural network feature representations  
for millions of images
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Feature Visualization
What kind of input would cause a neuron to maximally activate?
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Feature Visualization

Generate examples: starting from random noise,  
optimize an image to activate a particular neuron

What kind of input would cause a neuron to maximally activate?

mixed4b, 409
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Feature Visualization

[Olah, et al., Distill, 2017]

Generate examples: starting from random noise,  
optimize an image to activate a particular neuron

What kind of input would cause a neuron to maximally activate?

mixed4b, 409
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Demo
InceptionV1 ImageNet (ILSVRC)

Large-scale, 
prevalent CNN

~1.3M images 
1,000 classes

softmax0

input

3a 3b 4a 4b 4c 4d 4e 5a 5b

softmax1

softmax2

[Olah, et al., Distill, 2017]
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Unexpected Features

tench

What features has a neural network 
learned for tench? 

How are those features related?
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Tench attribution graph
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Data is important too!
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Unexpected Features

Attribution graph substructure from lionfish class.

lionfish

No more people features. 
But few "fish" features! Mostly textures.
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Discriminable Features
Do neural network feature representations align with people’s expectations?
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Discriminable Features
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Discriminable Features

brown bear black bear

🐻

intersection

Do neural network feature representations align with people’s expectations?
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The intersection of 
brown bear and black bear. 
Both classes share some bear-ness.

black fur

black bear face

black brown fur

brown fur

brown bear face
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Future Work

Interactive attribution 
graph comparison

Mining for 
subgraphs motifs

Adversarial  
attacks 

-/⋃/⋂

44













We thank Nilaksh Das, the GT Vis Lab, and 
the reviewers for their constructive feedback. 
Funded by the NSF and a NASA Fellowship.

Fred Hohman 
@fredhohman 
Georgia Tech

Visualizing Activation and 
Attribution Summarizations

fredhohman.com/summit

Haekyu Park 
Georgia Tech

Polo Chau 
Georgia Tech

Caleb Robinson 
Georgia Tech

Thanks!SUMMIT

( ,TILKKPUN =PL^,TILKKPUN =PL^

) *SHZZ :PKLIHY*SHZZ :PKLIHY

* ([[YPI\[PVU .YHWO =PL^([[YPI\[PVU .YHWO =PL^
PL[HG�E

PL[HG�D

PL[HG�H

PL[HG�G

PL[HG�F

ZJHSLZ WLYZVU

WLYZVU OVSKPUN ÄZO

ÄZO

🏔
Demo

📘
Paper

🎥
Video

💻
Code

📺
Slides

50


