Gamut

A Design Probe to Understand How Data Scientists Understand Machine Learning Models

CHI 2019

Fred Hohman
@fredhohman Georgia Tech

Andrew Head
UC Berkeley

Rob DeLine
Microsoft Research

Rich Caruana
Microsoft Research

Steven Drucker
Microsoft Research

Google

ai is

ai is dangerous
ai is bad
ai is the new electricity
ai is good
ai is the future
ai is a crapshoot
ai is overhyped
ai is taking over
ai is coming
ai is scary

> Google Search I'm Feeling Lucky

While building and deploying ML models is now an increasingly common practice, interpreting models is not.

What is interpretability?

What is interpretability?

Human understanding
of a system's. . .

What is interpretability?

What is interpretability?

internals
e.g., components [Gilpin, 2018]
operations
e.g., math [Biran, 2017]
data mapping
e.g., input to output [Montavon, 2017]
No formal, agreed upon definition [Lipton, 2016]

- representation in an explanation [Ribeiro, 2016]

GDPR (General Data Protection Regulation)

GDPR (General Data Protection Regulation)
\rightarrow Chapter $3 \rightarrow$ Section $4 \rightarrow$ Article 22
"Automated individual decision-making, including profiling"

GDPR (General Data Protection Regulation)

\rightarrow Chapter $3 \rightarrow$ Section $4 \rightarrow$ Article 22
"Automated individual decision-making, including profiling"

4I Right to explanation

Gamut Contributions

1. Capabilities

 of interpretability2. Design Probe embodying capabilities
3. Evaluation \& Investigation of probe \& emerging practice of interpretability w/ real users

Contribution 1: Interpretability Capabilities
Can we operationalize interpretability?

Contribution 1: Interpretability Capabilities
Can we operationalize interpretability?
Formative research with professional data scientists @

- 4 senior ML researchers
- 5 ML practitioners

Contribution 1: Interpretability Capabilities

Can we operationalize interpretability?

Formative research with professional data scientists @

- 4 senior ML researchers
- 5 ML practitioners

Prompt: In a perfect world, given a machine learning model, what questions would you ask it to help you interpret both the model and its predictions?

From formative research

Explainable ML Interface Questions

From formative research

Explainable ML Interface Questions

From formative research

Explainable ML Interface Questions

Why does this house cost that much?

From formative research

Explainable ML Interface Questions

Why does this house cost that much?

What is the difference between these two?

From formative research

Explainable ML Interface Questions

Why does this house cost that much?

What is the difference between these two?

From formative research

Explainable ML Interface Questions

Why does this house cost that much?
What is the difference between these two?
What if I added...

From formative research

Explainable ML Interface Questions

Why does this house cost that much?
What is the difference between these two?
What if I added...
What are similar homes?

From formative research

Explainable ML Interface Questions

Why does this house cost that much?
What is the difference between these two?
What if I added...
What are similar homes?
Where is it wrong?

From formative research

Explainable ML Interface Questions

Why does this house cost that much?
What is the difference between these two?
 What if I added...

What are similar homes?
Where is it wrong?

From formative research

Explainable ML Interface Questions

Why does this house cost that much?
What is the difference between these two?

What if I added...
What are similar homes?
Where is it wrong?

From formative research

Explainable ML Interface Questions

Why does this house cost that much?
What is the difference between these two?
What if I added...
What are similar homes?
Where is it wrong?

What is most important?

From formative research

Explainable ML Interface Questions

Why does this house cost that much?
What is the difference between these two?
What if I added...
What are similar homes?
Where is it wrong?

What is most important?

From formative research

Explainable ML Interface Questions

Why does this house cost that much?
What is the difference between these two?
What if I added...
What are similar homes?
Where is it wrong?
What is most important?

From formative research

Explainable ML Interface Capabilities

Why does this house cost that much?
C1 Local instance explanations
What is the difference between these two?
(C2) Instance explanation comparisons
What if I added..
(C3) Counterfactuals
What are similar homes?
(C4) Nearest neighbors

Where is it wrong?
Regions of error
What is most important?
(C6) Feature importance

Explainable ML Interface Capabilities

Why does this house cost that much?
(C1) Local instance explanations
What is the difference between these two?
(2) Instance explanation comparisons

What if I added...
C3 Counterfactuals
What are similar homes?
(C4) Nearest neighbors
Gamut: A Design Probe to Understand How Data Scientists Understand Machine Learning Models

Where is it wrong?Regions of error
Definitions + examples in the paper!
What is most important?
C6 Feature importance

Contribution 2: Design Probe
How to test our capabilities?

Contribution 2: Design Probe

How to test our capabilities?

Goal: understand emerging practice of model interpretability

Contribution 2: Design Probe

How to test our capabilities?

Goal: understand emerging practice of model interpretability
[Hutchinson, 2003]
Design probe: "instrument that is deployed to find out about the unknown—returning with useful or interesting data."
Balance of design, social science, engineering

How does our design probe support our capabilities?

House 550
\$190,606

House 550

\$190,606 TotRmsAbvGrd LowQualFinSF
YrSold
GarageArea
GarageYrBIt
FirstFIrSF
ThreeSsnPorch
MiscVal
TotalBsmtSF
EnclosedPorch
BsmtUnfSF
OpenPorchSF
WoodDeckSF
BsmtFinSFOne
OverallQual
PoolArea
YearBuilt
KitchenAbvGr
GrLivArea
SecondFIrSF
LotArea

House 550

House features

House 798
\$188,620

Generalized Additive Model (GAM)

\downarrow Global explanation
\downarrow Easy to understand:
\downarrow Average math skills
\downarrow Average graphicacy
\downarrow High accuracy, realistic

Generalized Additive Model (GAM)

GAMs are a generalization of linear models. To illustrate the difference, consider a dataset $D=\left\{\left(\mathrm{x}_{\mathrm{i}}, y_{i}\right)\right\}^{N}$ of N data points, where $\mathrm{x}_{\mathrm{i}}=\left(x_{i 1}, x_{i 2}, \ldots, x_{i M}\right)$ is a feature vector with M features, and y_{i} is the target, i.e., the response, variable. Let x_{j} denote the j th variable in feature space. A typical linear regression model can then be expressed mathematically as:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{N} x_{N}
$$

This model assumes that the relationships between the target variable y_{i} and features x_{j} are linear and can be captured in slope terms $\beta_{1}, \beta_{2}, \ldots, \beta_{N}$. If we instead assume that the relationship between the target variable and features is smooth, we can write the equation for a GAM [24]:

$$
y=\beta_{0}+f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\cdots+f_{N}\left(x_{N}\right)
$$

Notice here that the previous slope terms $\beta_{1}, \beta_{2}, \ldots, \beta_{N}$ have been replaced by smooth, shape functions f_{j}. In both models β_{0} is the model intercept, and the relationship between the target variable and the features is still additive; however, each feature now is described by one shape function f_{j} that can be nonlinear and complex (e.g., concave, convex, or "bendy") [28].

Sort waterfall linear

Instance 798 Actual: 196,000.00 Prediction: 188,620.13

Showing 1119 of 1119 CLEAR FLLTERS

Contribution 3: Evaluation and Investigation
User Study

Contribution 3: Evaluation and Investigation
User Study

12 data scientists, ~ 1.5 hours each

Contribution 3: Evaluation and Investigation

User Study

12 data scientists, ~ 1.5 hours each
Think-aloud + answering questions:

1. data \& model questions they wrote before seeing Gamut
2. prepared questions by us

Contribution 3: Evaluation and Investigation

User Study

12 data scientists, ~ 1.5 hours each
Think-aloud + answering questions:

1. data \& model questions they wrote before seeing Gamut
2. prepared questions by us

Tutorial \rightarrow Study \rightarrow Interview

What we want to investigate using Gamut
Research Questions

What we want to investigate using Gamut

Research Questions

KQ1. Reasons for Model Interpretability

Why do data scientists need interpretability and how do they use it in Gamut?

What we want to investigate using Gamut

Research Questions

RQ1. Reasons for Model Interpretability
Why do data scientists need interpretability and how do they use it in Gamut?
© RQ2. Global v. Local Explanations
How do data scientists use different explanation paradigms?

What we want to investigate using Gamut

Research Questions

\& RQ1. Reasons for Model Interpretability
Why do data scientists need interpretability and how do they use it in Gamut?
© RQ2. Global v. Local Explanations
How do data scientists use different explanation paradigms?
4 RQ3. Interactive Explanations
How does interactivity play a role in explainable machine learning interfaces?

Contribution 3: Evaluation and Investigation

RQ1. Interpretability Needs and Usage

Communication is a spectrum.
". ..figure out what you want emphasize and what you want to minimize. Know your audience and purpose."

Contribution 3: Evaluation and Investigation
RQ1. Interpretability Needs and Usage
Model building and debugging to boost accuracy.
"I want to understand bit by bit how the dataset features work with each other, influence each other."

Contribution 3: Evaluation and Investigation
RQ1. Interpretability Needs and Usage
Data understanding > model deployment.
"This would help me get to valuable nuggets of information, which is what [my stakeholders] are ultimately interested in."

Contribution 3: Evaluation and Investigation
RQ1. Interpretability Needs and Usage
Hypothesis generation to help build trust.
But... eager to rationalize explanations; troublesome without healthy skepticism.

Contribution 3: Evaluation and Investigation
RQ2. Global v. Local Explanations \&

Contribution 3: Evaluation and Investigation
RQ2. Global v. Local Explanations \&

Contribution 3: Evaluation and Investigation
RQ2. Global v. Local Explanations \&

Contribution 3: Evaluation and Investigation
RQ2. Global v. Local Explanations \&

Contribution 3: Evaluation and Investigation

RQ2. Global v. Local Explanations

Contribution 3: Evaluation and Investigation
RQ2. Global v. Local Explanations \&

Contribution 3: Evaluation and Investigation

RQ3. Interactive Explanations \&

Contribution 3: Evaluation and Investigation

RQ3. Interactive Explanations \&

Primary mechanism for exploring, comparing, and explaining predictions

Contribution 3: Evaluation and Investigation

RQ3. Interactive Explanations \&

Primary mechanism for exploring,
comparing, and explaining predictions
Converse with a model

Contribution 3: Evaluation and Investigation
RQ3. Interactive Explanations \&

Primary mechanism for exploring, comparing, and explaining predictions

Converse with a model

Could not conceive of non-interactive

Takeaways

Takeaways

Consider interpretability capabilities for your interfaces

 Interpretability is not a singular, rigid concept
Takeaways

Consider interpretability capabilities for your interfaces Interpretability is not a singular, rigid concept
© Tailor explanations for specific audiences
Balance simplicity and completeness

Takeaways

Consider interpretability capabilities for your interfaces Interpretability is not a singular, rigid concept
© Tailor explanations for specific audiences
Balance simplicity and completeness
4 Design and integrate effective interaction
Interaction key to realizing interpretability \& solidify model understanding [Weld \& Bansal, 2018]
ceorgia
Georgia
1ech

Microsoft'

bit.ly/gamut-chi

Research

extra slides

General Linear Model

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{n} x_{n}
$$

General Linear Model

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{n} x_{n}
$$

$\tau_{\text {target }}$

$$
\begin{aligned}
& y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{n} x_{n}
\end{aligned}
$$

General Linear Model

$$
\begin{aligned}
y= & \beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{n} x_{n} \\
& \tau_{\text {intercept }}
\end{aligned}
$$

General Linear Model

$$
y=\beta_{0}^{\beta}+{\underset{c}{1}}_{\beta_{1} x_{1}}+\underset{\substack{\beta_{2} \\ x_{2}}}{ }+\cdots+\beta_{n} x_{n}
$$

General Linear Model

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{n} x_{n}
$$

General Linear Model

$$
\begin{aligned}
& y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{n} x_{n} \\
& \\
& \Downarrow
\end{aligned}
$$

General Linear Model

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{n} x_{n}
$$

\Downarrow

$$
y=\beta_{0}+f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\cdots+f_{n}\left(x_{n}\right)
$$

General Linear Model

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{n} x_{n}
$$

\Downarrow

$$
\text { comanempean } f
$$

$$
\begin{aligned}
& \text { Generariliced Additive Model } f\left(f_{1}\right. \text { Shape ferdinas } \\
& y=\beta_{0}+f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\cdots+f_{n}\left(x_{n}\right)
\end{aligned}
$$

General Linear Model

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{n} x_{n}
$$

\Downarrow

$$
y=\beta_{0}+f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\cdots+f_{n}\left(x_{n}\right)
$$

General Linear Model

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{n} x_{n}
$$

\Downarrow
Generalized Additive Model \smile Shape functions $\begin{gathered}\text { nonlinear, or "bendy" } \\ \text { [Jones \& Almond, 1992] }\end{gathered}$

$$
y=\beta_{0}+f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\cdots+f_{n}\left(x_{n}\right)
$$

