FAIRWIS

Visual Analytics for Discovering Intersectional Bias in Machine Learning

Alex
Cabrera
Carnegie Mellon

Will
Epperson
Georgia Tech

Fred Hohman Georgia Tech

Minsuk Kahng Oregon State

Jamie
Morgenstern
Univ. of Washington

Polo Chau Georgia Tech

Recidivism Prediction

Self-Driving Cars

Machine learning is being deployed to various societally impactful domains

Angwin J, Larson J, Mattu S, Kirchner L. 2016. Machine bias: There's software used across the country to predict future criminals and it's biased against blacks. www.propublica.org

https://www.wired.com/story/crime-predicting-algorithms-may-not-outperform-untrained-humans/

Wilson, B., Hoffman, J., & Morgenstern, J. (2015). Predictive inequity in object detection. *arXiv preprint arXiv:1902.11097*.

Recidivism Prediction

Self-Driving Cars

Unfortunately, these systems can perpetuate and worsen societal biases

Angwin J, Larson J, Mattu S, Kirchner L. 2016. Machine bias: There's software used across the country to predict future criminals and it's biased against blacks. www.propublica.org

https://www.wired.com/story/crime-predicting-algorithms-may-not-outperform-untrained-humans/

Wilson, B., Hoffman, J., & Morgenstern, J. (2010) Predictive inequity in object detection. *arXiv preprint arXiv:1902.11097*.

Business

Markets

World

Politics

More

Guardian

Search jobs

Sign in Q Search > T

l by reade<u>rs</u>

MOTHERBOARD

TECH BY VICE

ion

Algorithms Have Nearly Mastered Human Language. Why Can't They Stop Being risl Sexist?

race, s

To fight gender bias, researchers are training language-processing algorithms to envision a world where it doesn't exist.

By Lynne Peskoe-Yang

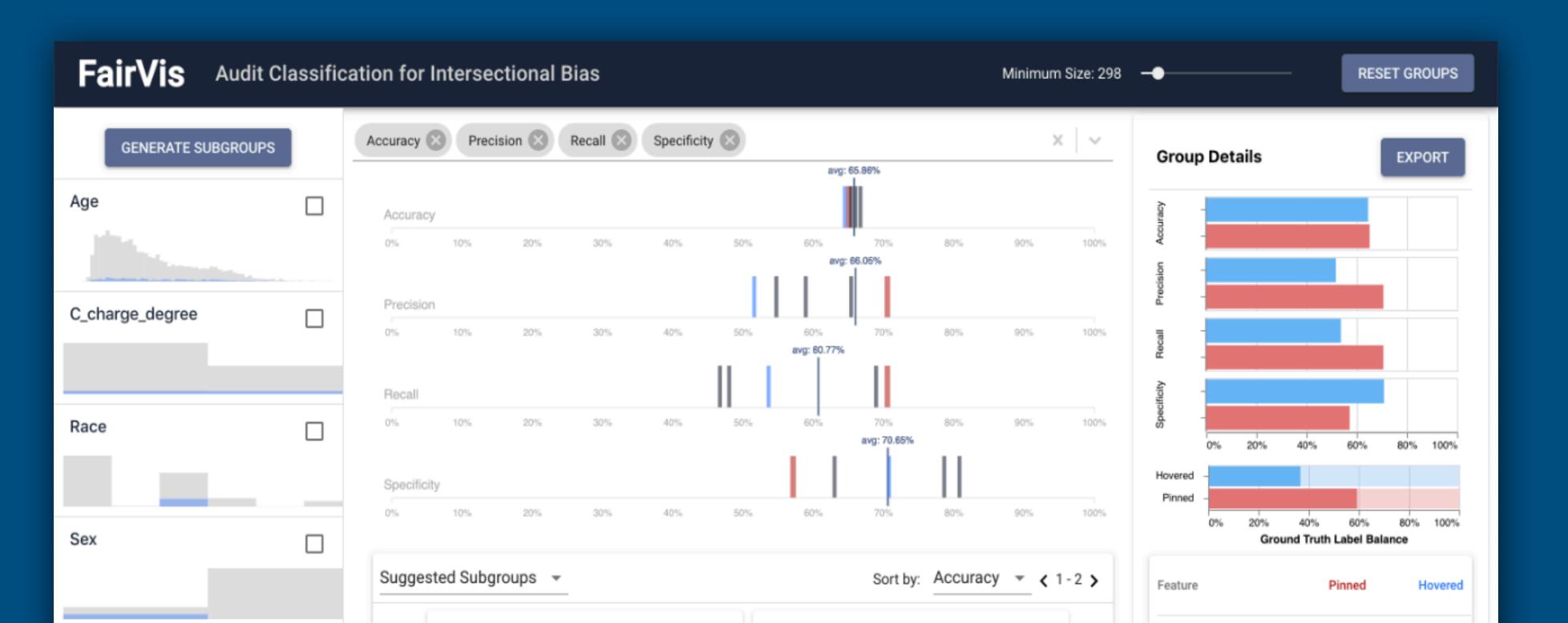
Son 19 2010 11.42am G Shara W Tweat

Fairness is a wicked problem

Issues so complex and dependent on so many factors that it is hard to grasp what exactly the problem is, or how to tackle it.

FairVis

Visual analytics for discovering biases in machine learning models



Challenges for Discovering Bias

Intersectional bias

Gender Classifier (2017)

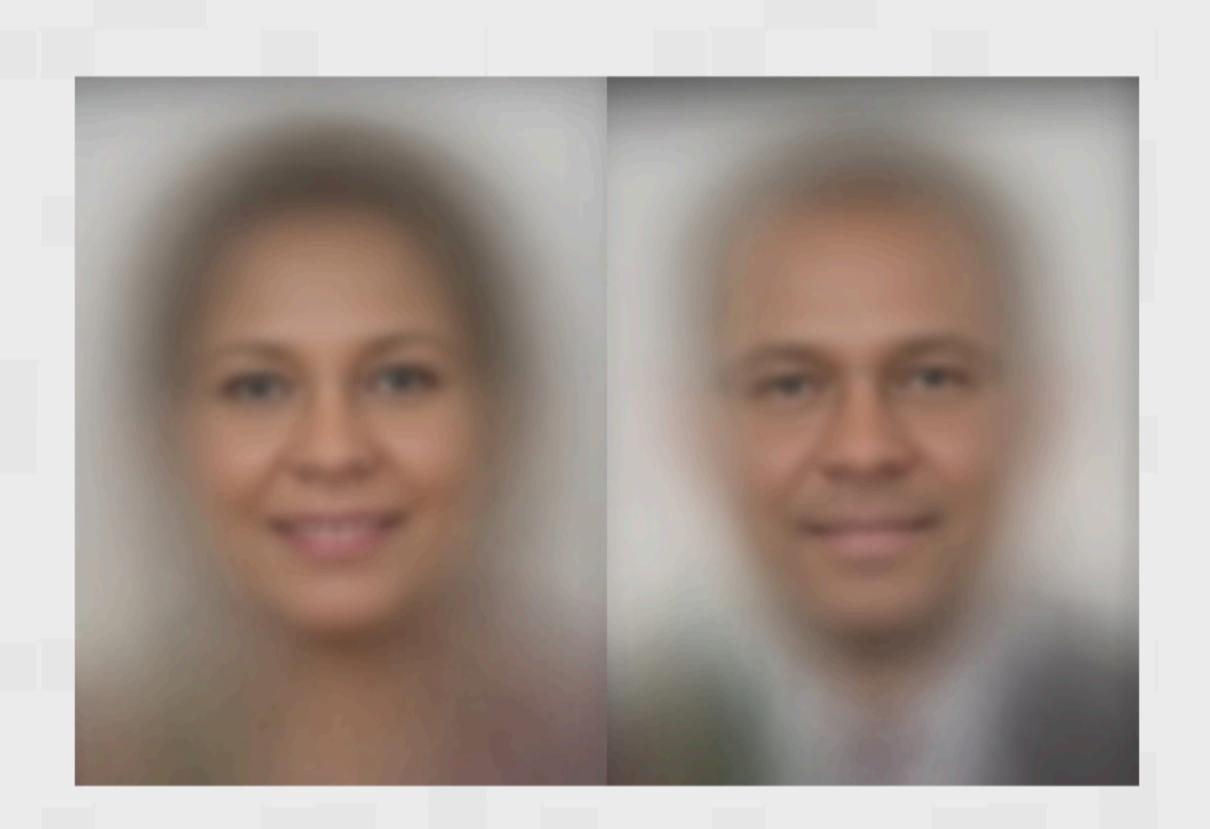
Microsoft 93.7%

90.0%

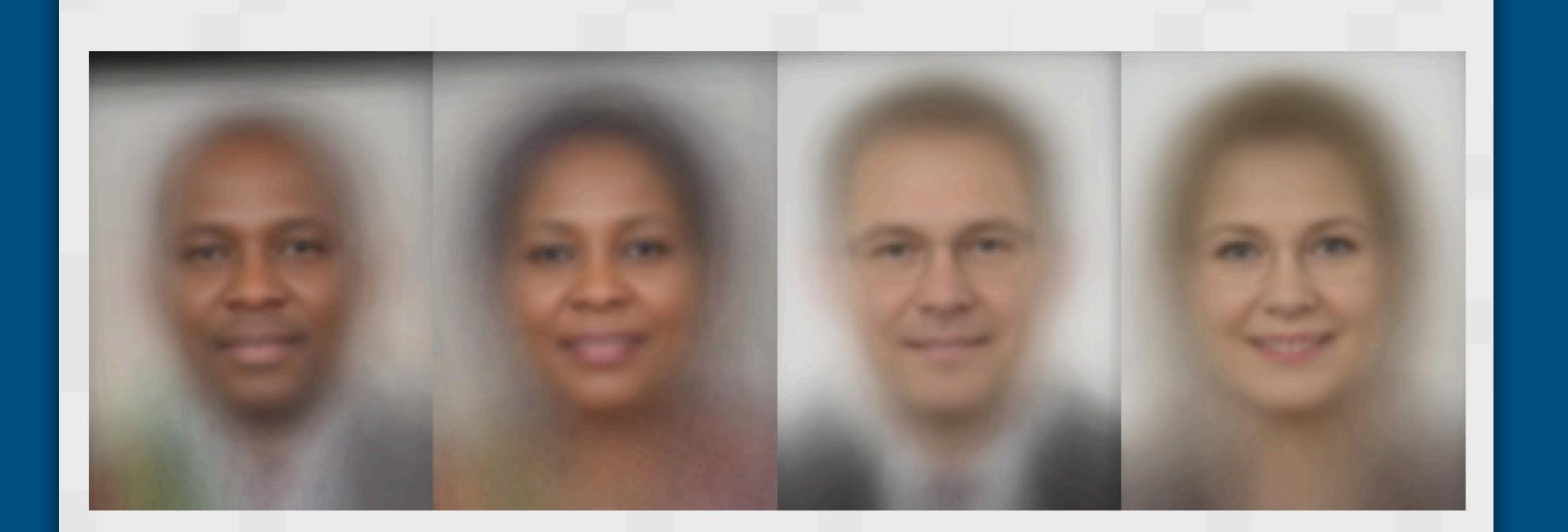
87.9%

Buolamwini, J., & Gebru, T. (2018, January). Gender shades: Intersectional accuracy disparities in commercial gender classification. In Conference on fairness, accountability and transparency (pp. 77-91).

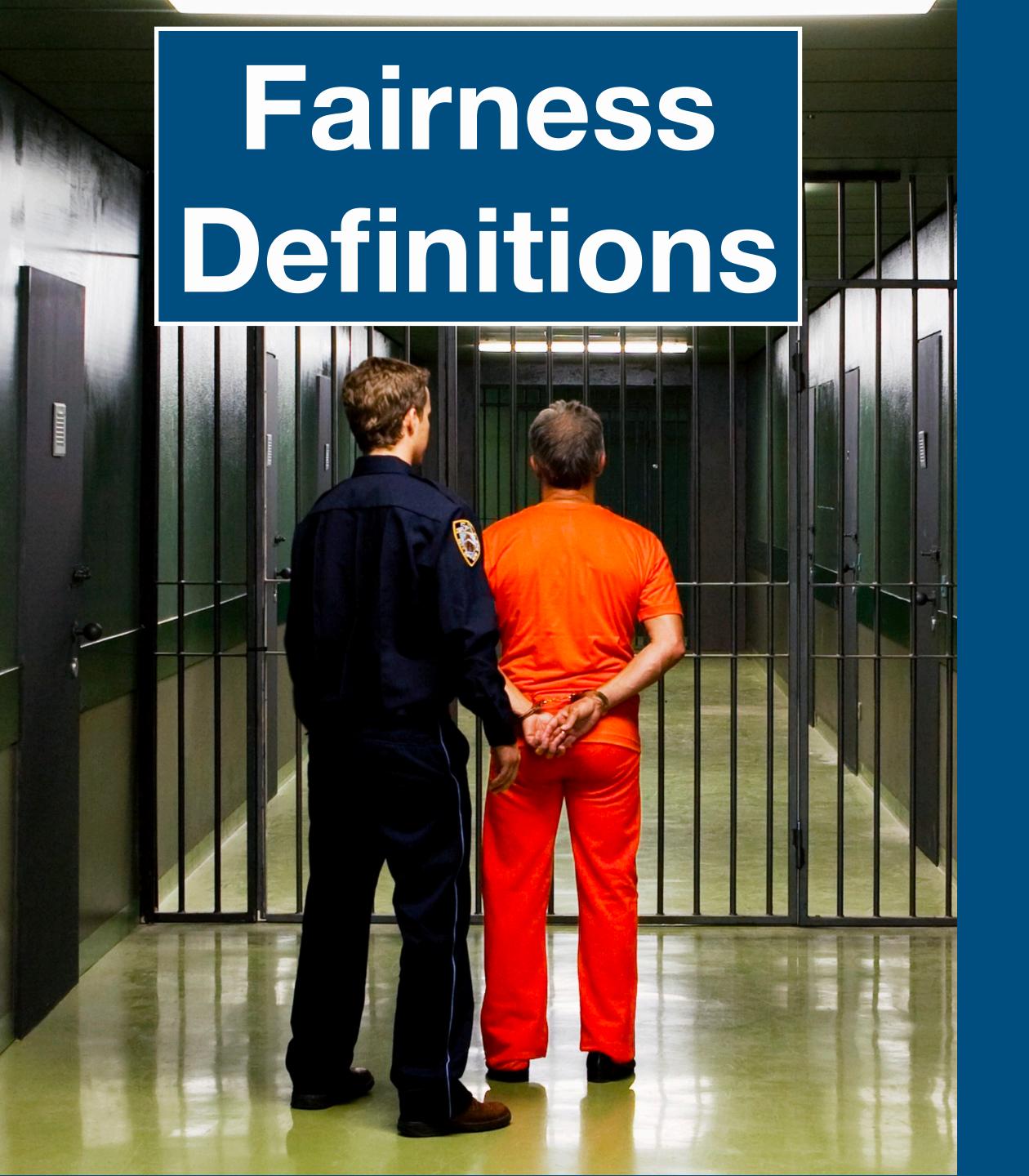
Gender Classifier	Female Subjects Accuracy	Male Subjects Accuracy	Error Rate Diff.
Microsoft	89.3%	97.4%	8.1%
FACE**	78.7%	99.3%	20.6%
IBM	79.7%	94.4%	14.7%



Gender Classifier	Darker Male	Darker Female	Lighter Male	Lighter Female	Largest Gap
Microsoft	94.0%	79.2%	100%	98.3%	20.8%
FACE***	99.3%	65.5%	99.2%	94.0%	33.8%
IBM	88.0%	65.3%	99.7%	92.9%	34.4%



Defining Fairness



Accuracy?

Recall?

False Positive Rate?

F1 Score?

Predictive Power?

Over 20 different measures of fairness are found in the ML fairness literature

Verma, Sahil, and Julia Rubin. "Fairness definitions explained." 2018 IEEE/ACM International Workshop on Software Fairness (FairWare). IEEE, 2018.

Impossibility of Fairness

Negative
Class
Balance

Calibration

Positive Class
Balance

Some measures of fairness are mutually exclusive, have to pick between them

Kleinberg, Jon, Sendhil Mullainathan, and Manish Raghavan. "Inherent Trade-Offs in the Fair Determination of Risk Scores." 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

Challenges

1

Auditing the performance of hundreds or thousands of intersectional subgroups

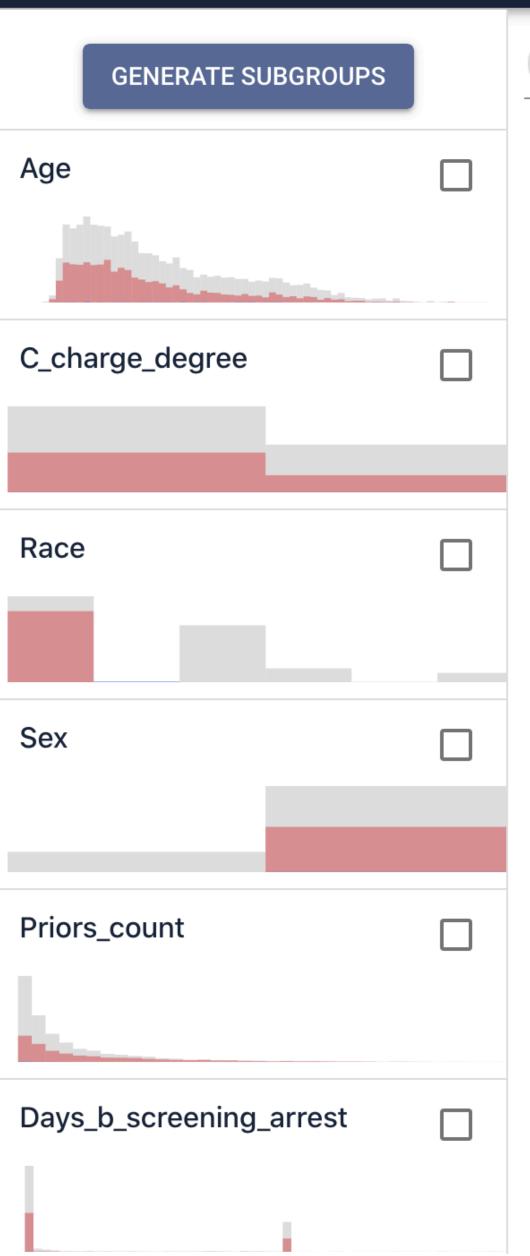
2

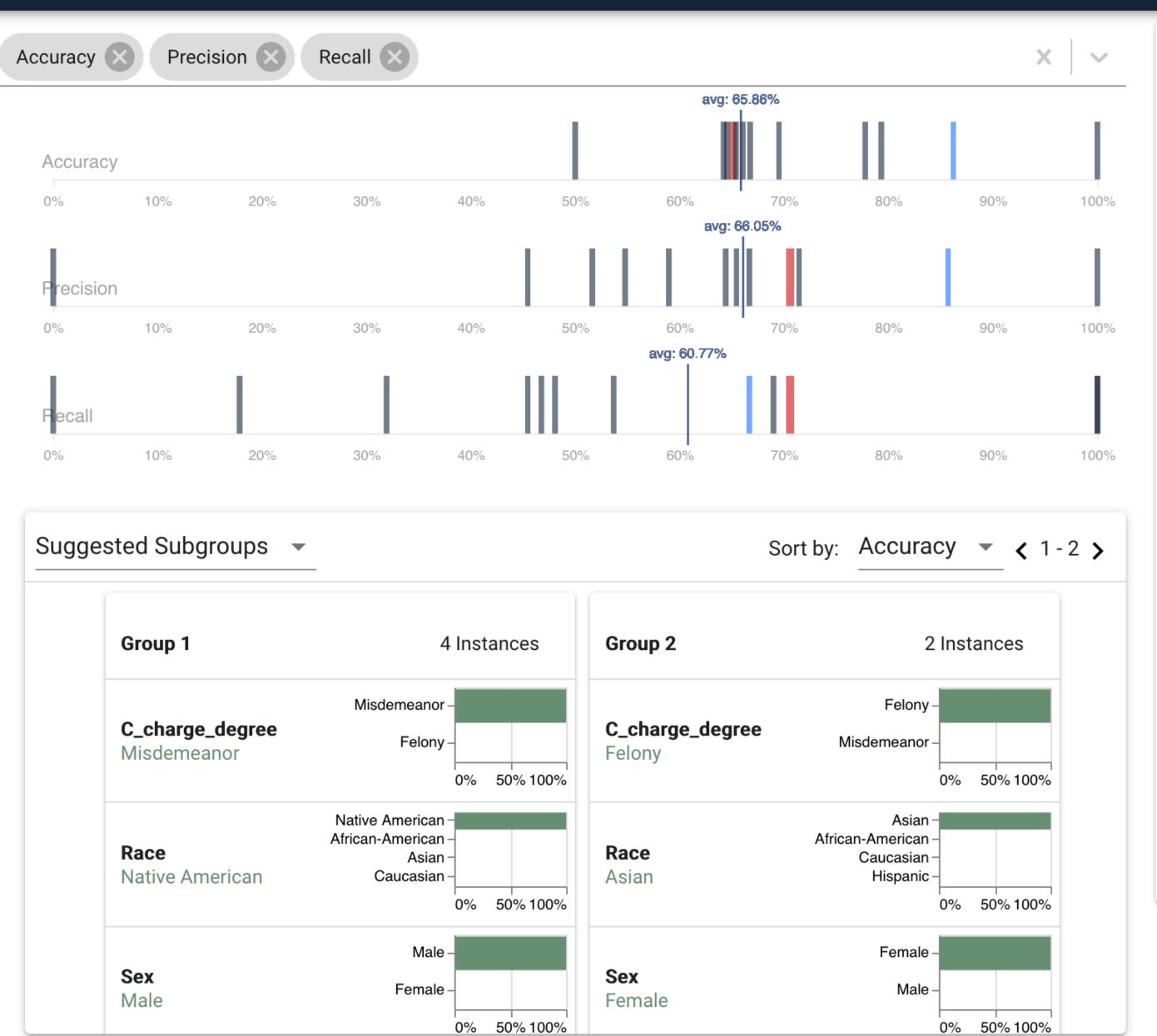
Balancing dozens of incompatible definitions of fairness

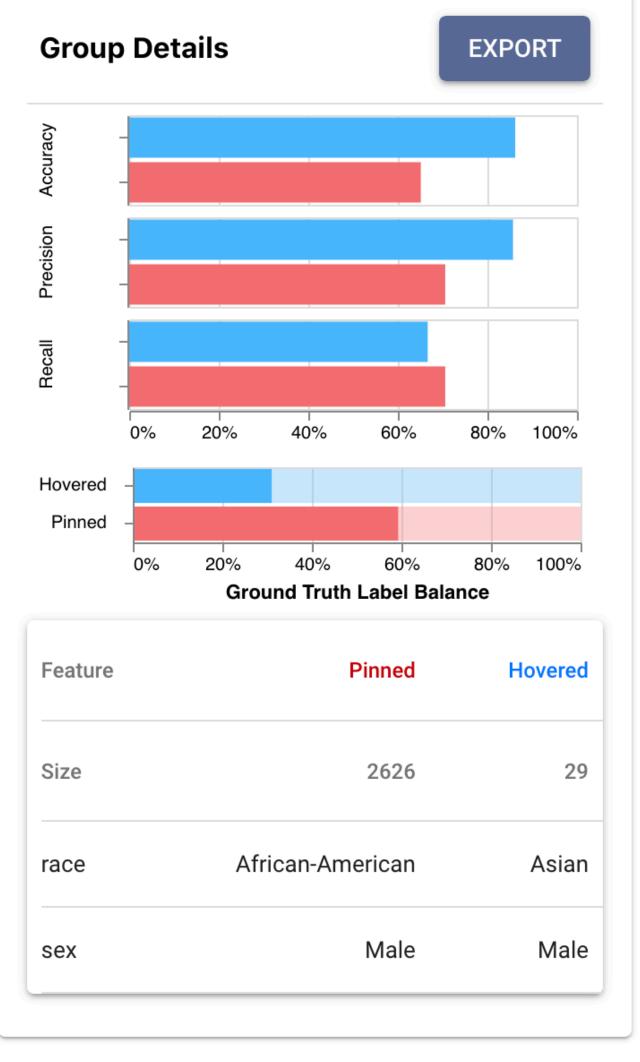
Race	Accuracy
African-American	73
Asian	77
Caucasian	79
Hispanic	91
Native American	88
Other	67

Race, Sex	Accuracy		
African-American, Male	60		
Asian, Male	86		
Caucasian, Male	96		
Hispanic, Male	91		
Native American, Male	75		
Other, Male	81		
African-American, Female	97		
Asian, Female	66		
Caucasian, Female	73		
Hispanic, Female	91		
Native American, Female	92		
Other, Female	84		

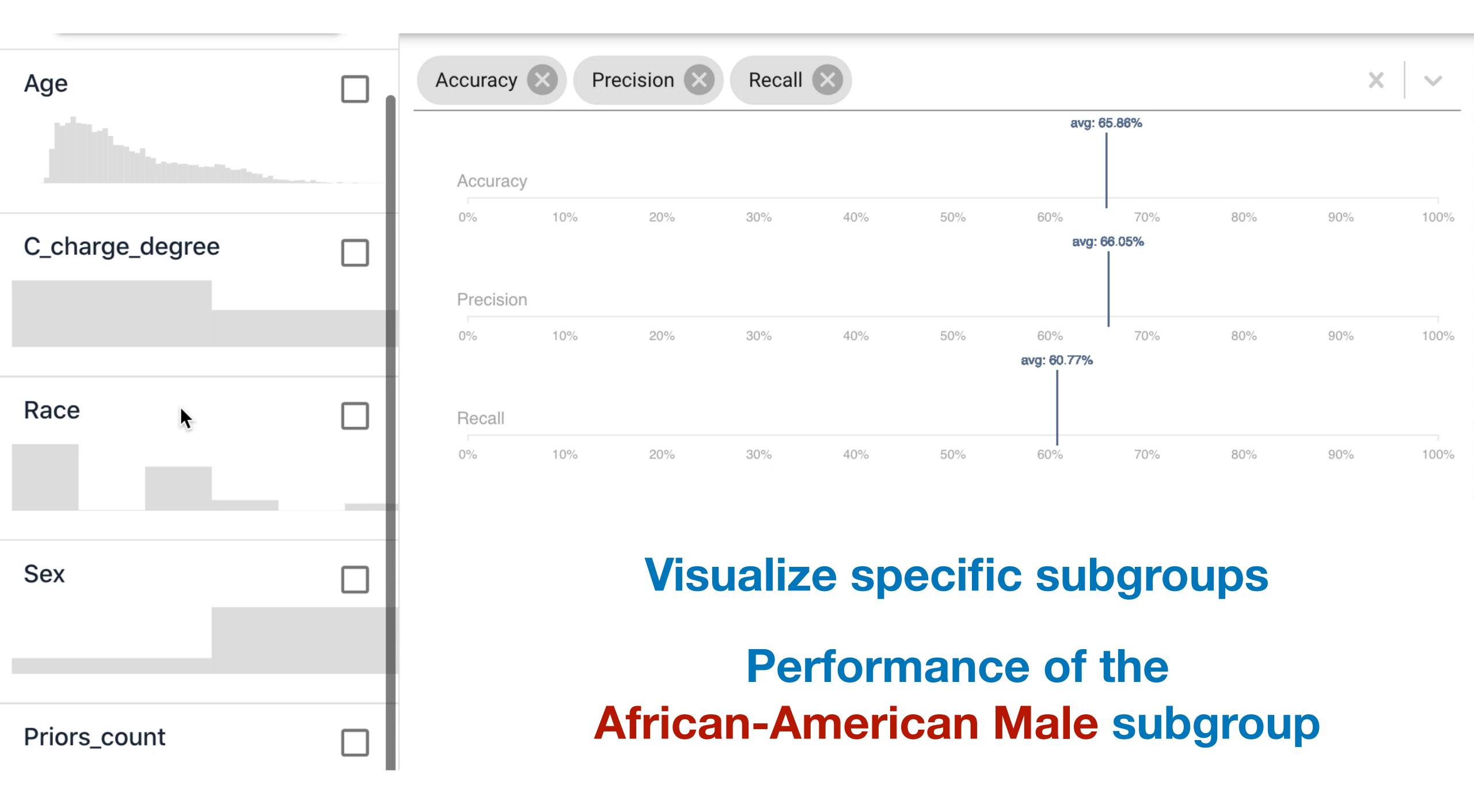
Race, Sex	Accuracy	FPR	FNR	F1	Precision	
African-American, Male	87	74	61	68	95	86
Asian, Male	83	93	77	74	88	84
Caucasian, Male	80	82	93	71	72	88
Hispanic, Male	96	86	85	92	81	63
Native American, Male	89	85	76	85	93	97
Other, Male	78	69	90	76	68	62
African-American, Female	72	72	99	67	75	61
Asian, Female	84	68	65	91	71	71
Caucasian, Female	88	100	91	63	87	95
Hispanic, Female	76	94	99	71	77	64
Native American, Female	82	65	65	98	81	78
Other, Female	86	98	72	83	72	69

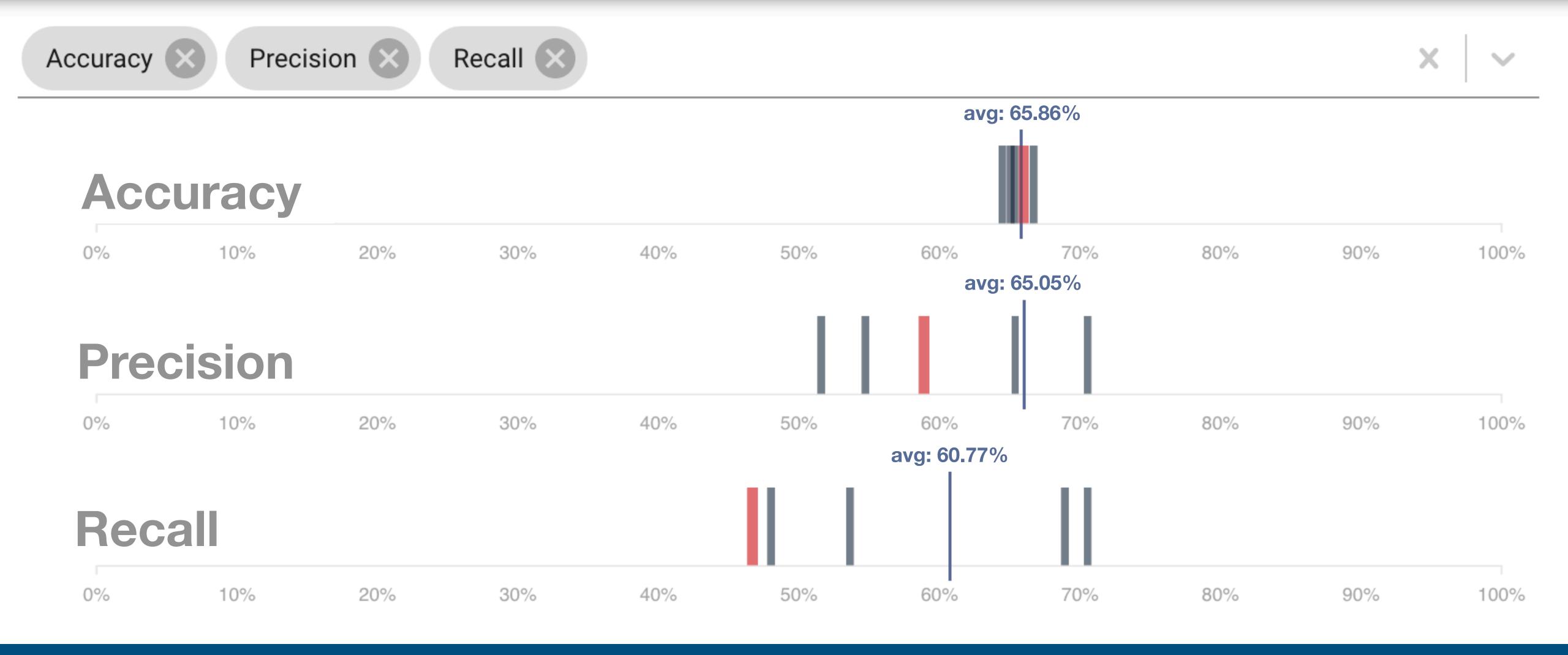






Use Case 1 Auditing for Suspected Bias





= Subgroup of African-American Males

GENERATE SUBGROUPS Age C_charge_degree Race Sex

Visualize all the combinations of subgroups for selected features

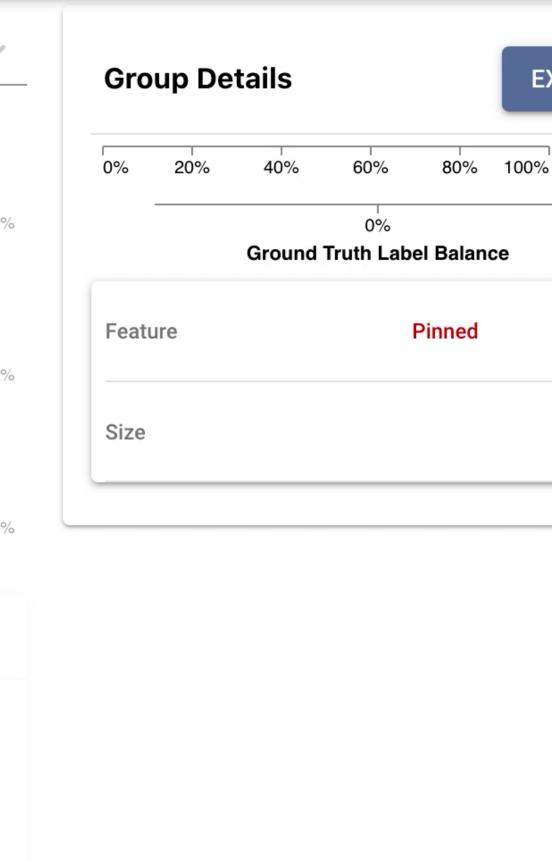
African-American Male, Caucasian Male, African-American Female, etc.

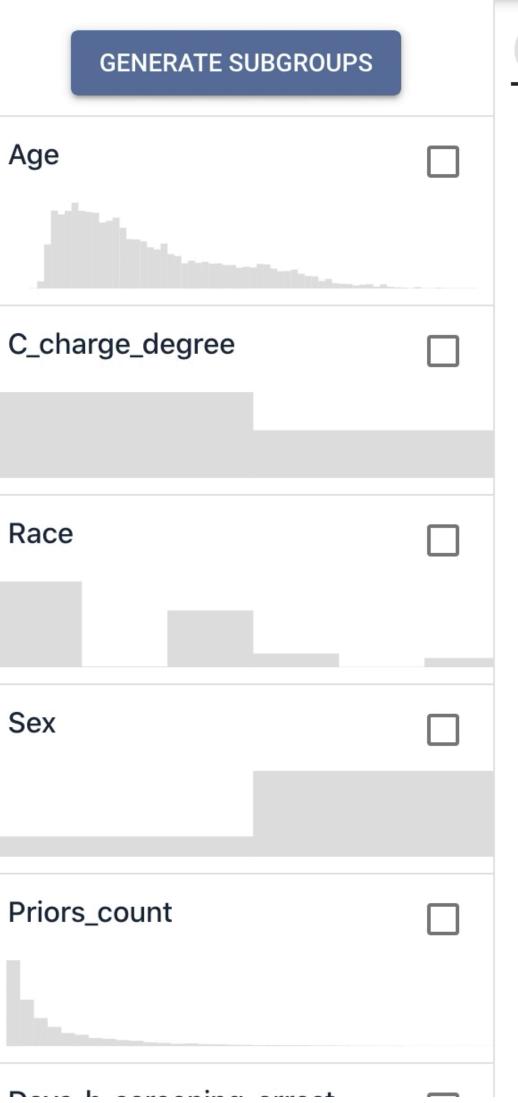
EXPORT

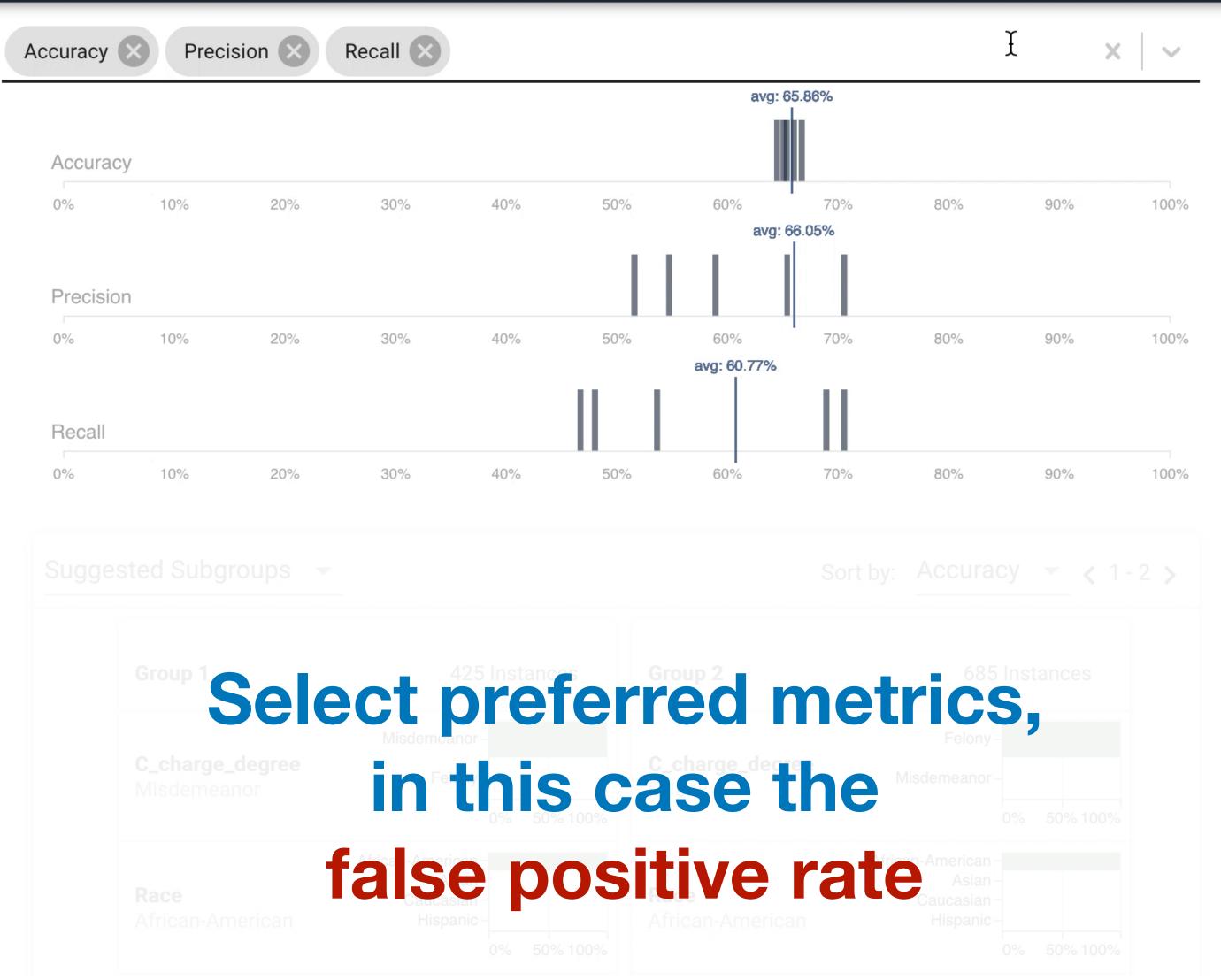
Hovered

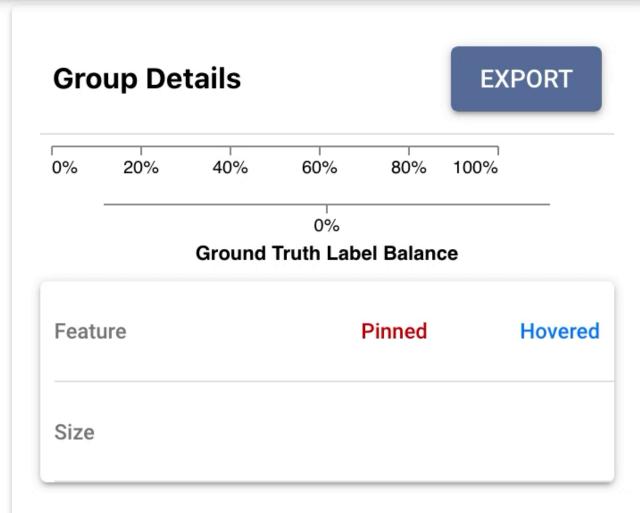
Filter for significantly

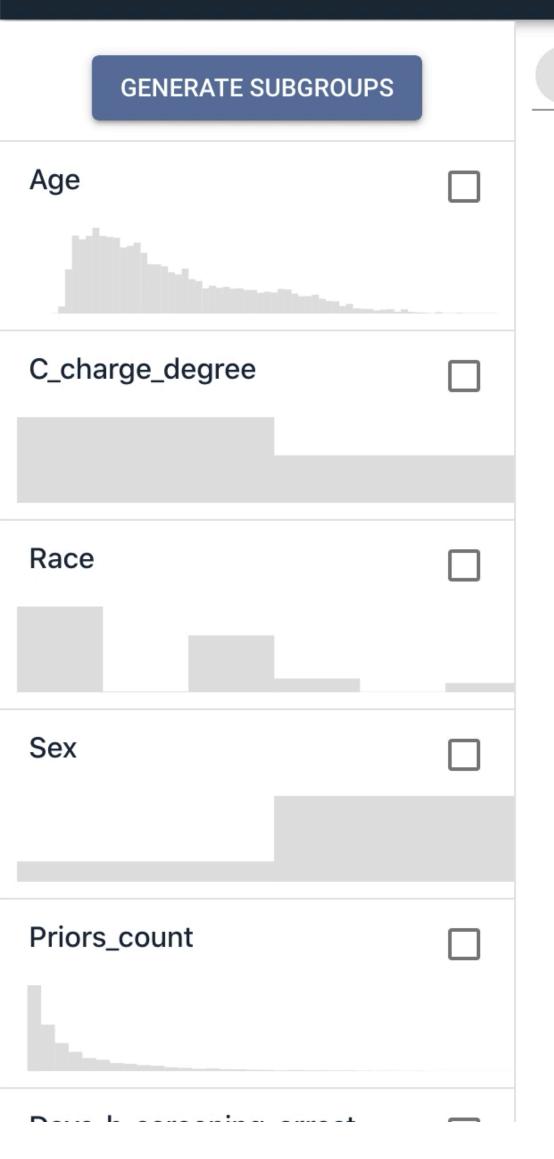
large subgroups

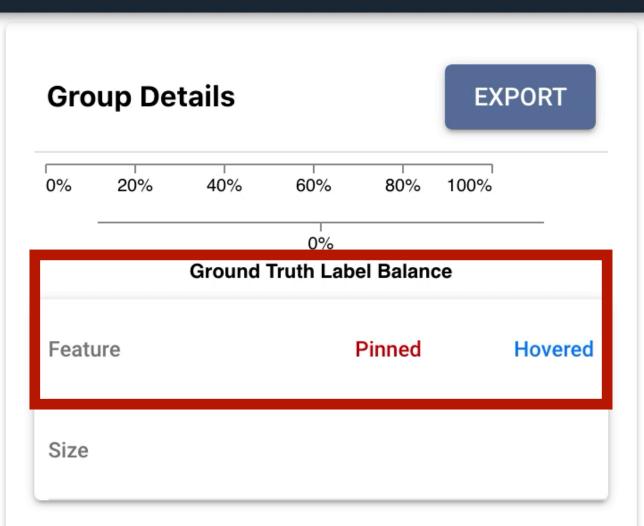










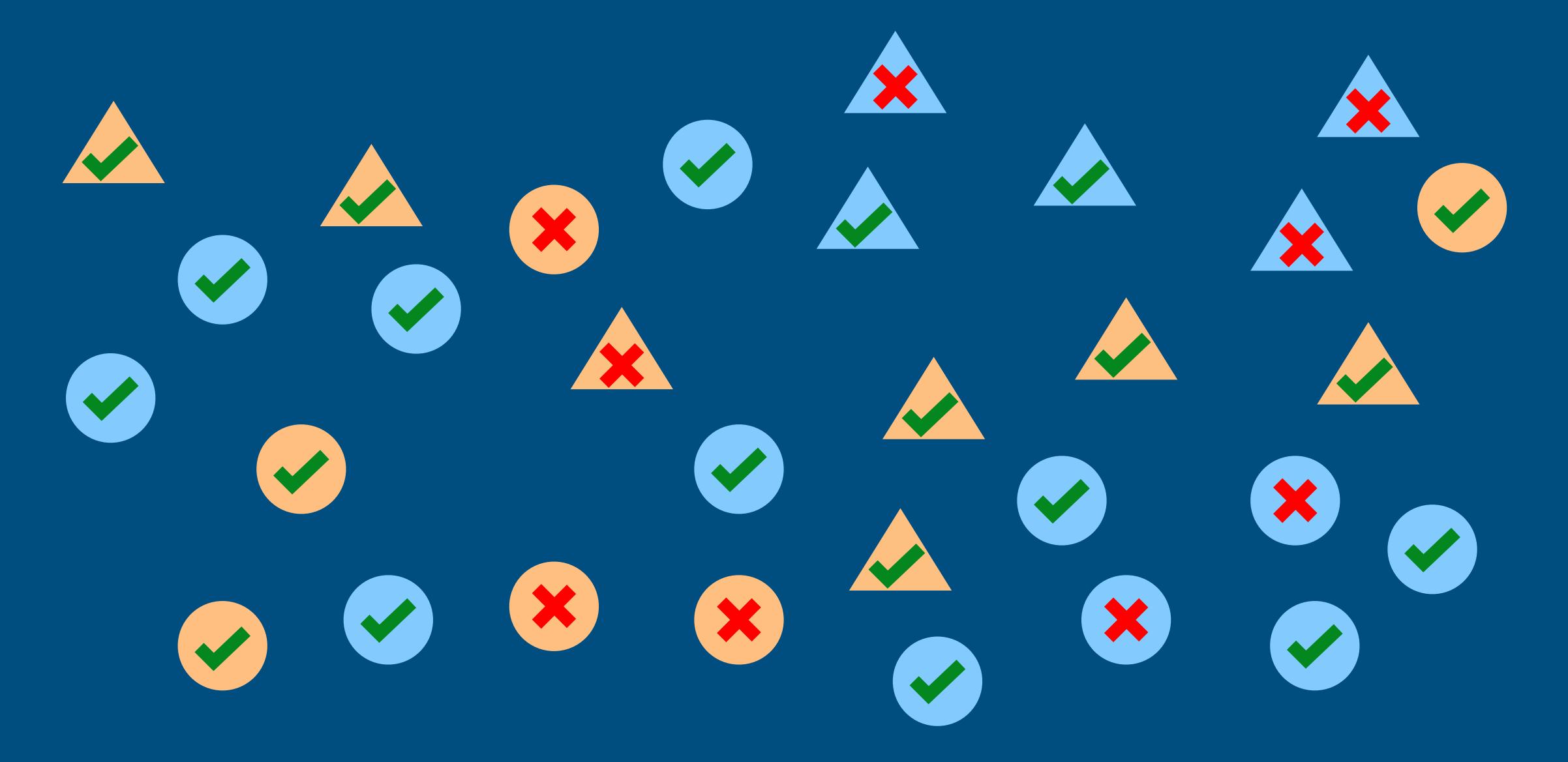


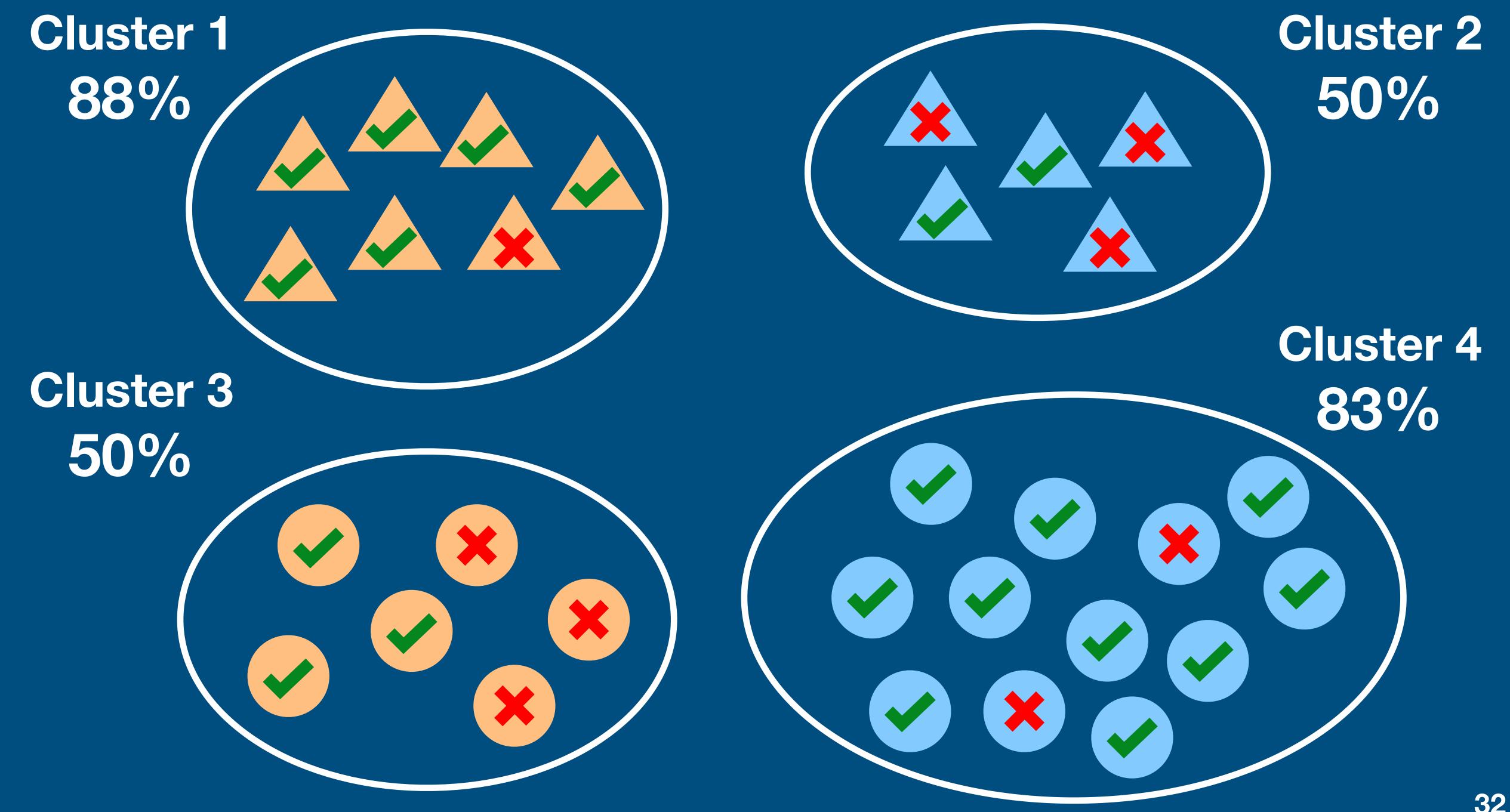
Use Case 2 Discovering Unknown Biases

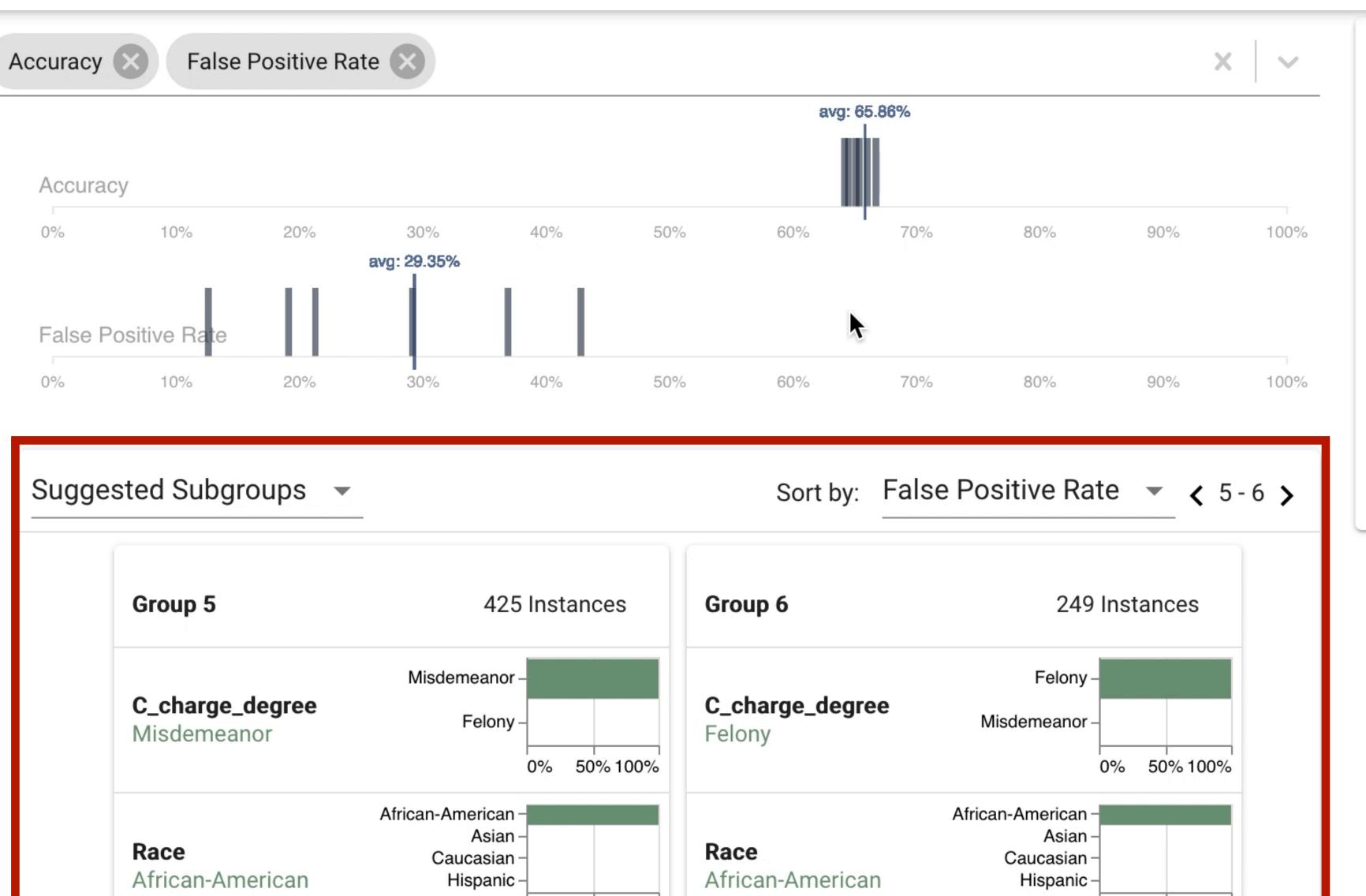
Suggested Subgroups

Shape Classification

70% Accuracy







50% 100%

0% 50% 100%

Sex

Female

Male-

Female -

Sex

Male

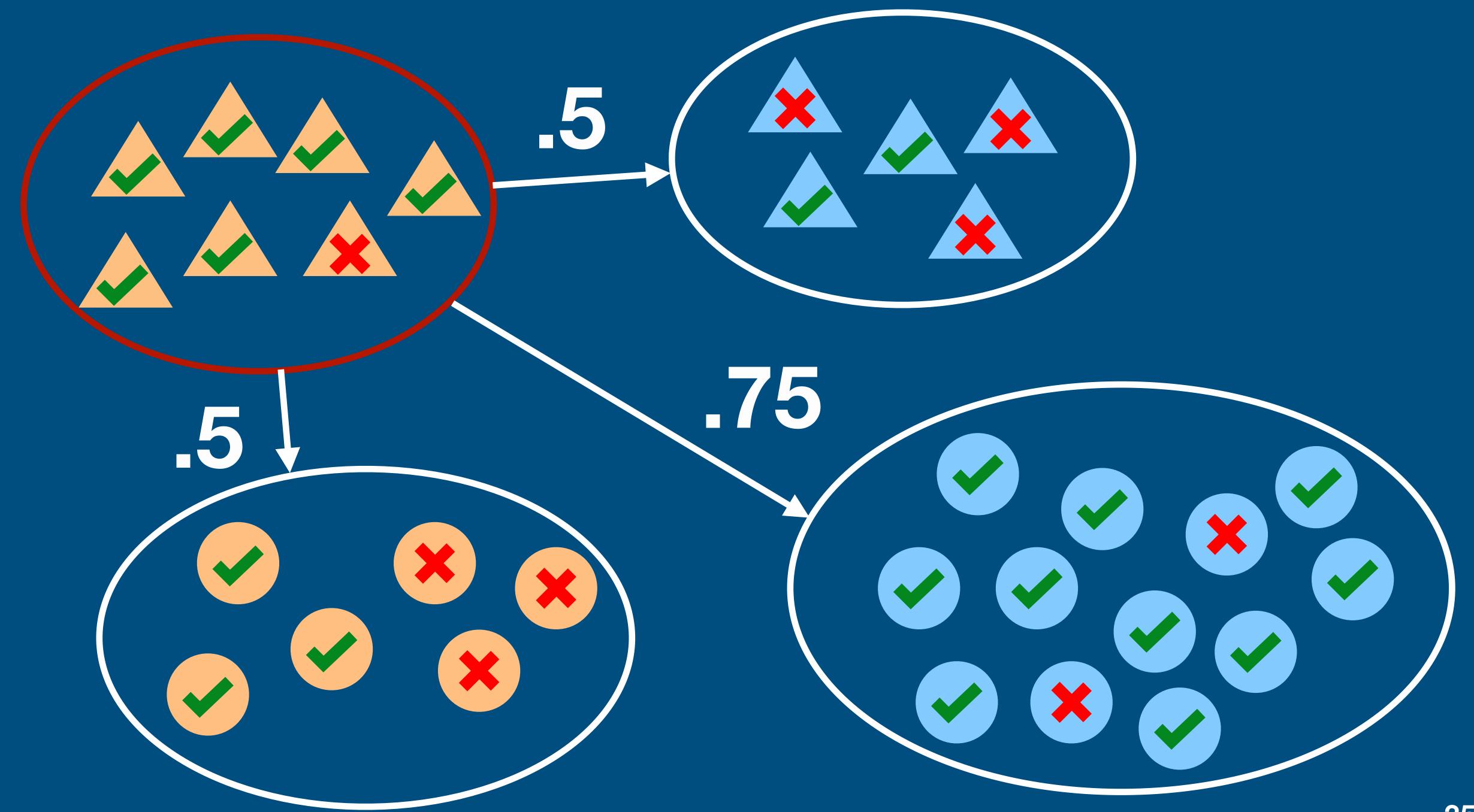
50% 100%

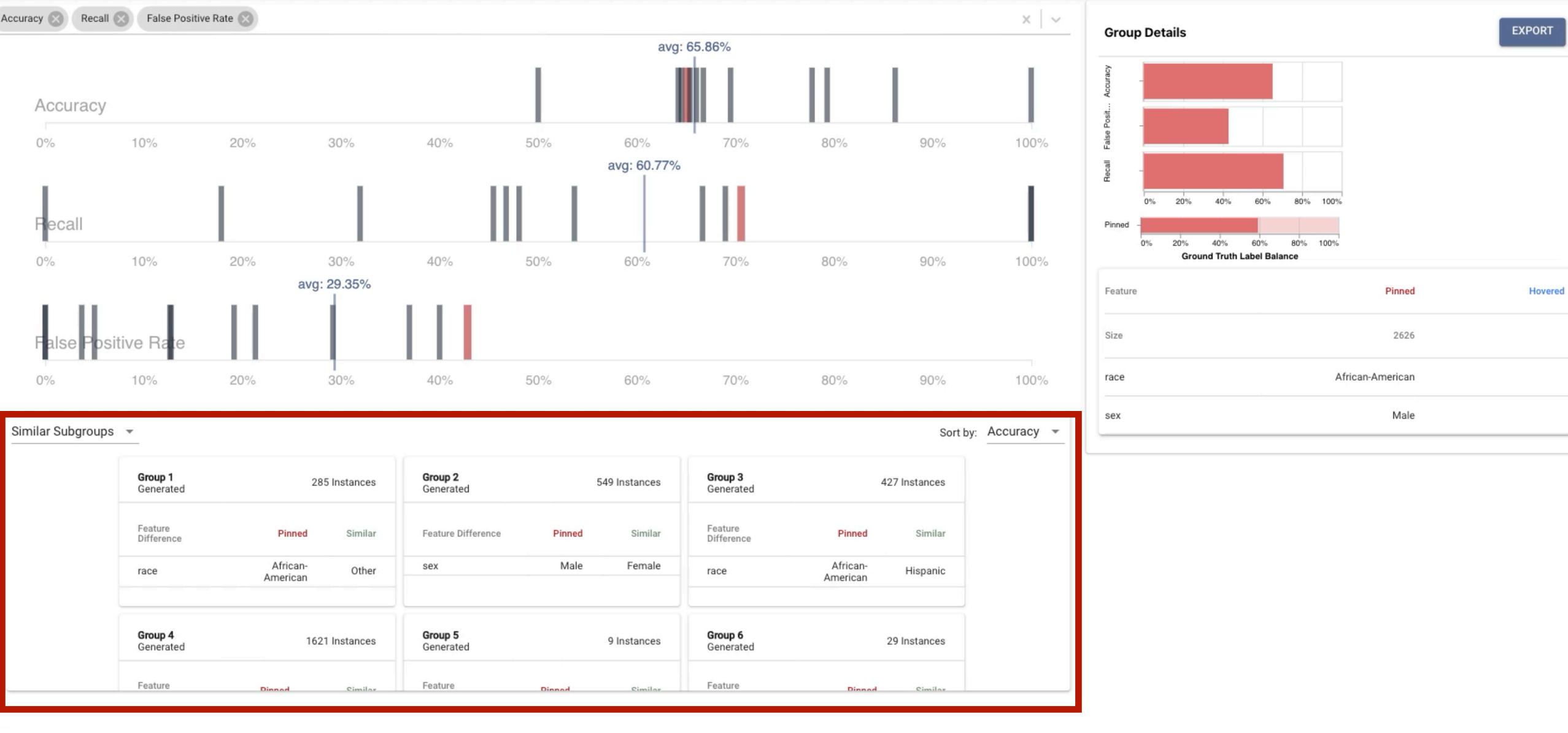
0% 50% 100%

Female -

Male-

Similar Subgroups



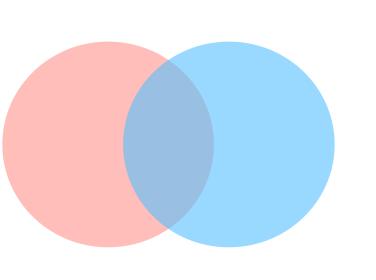


Compare the African-American Male subgroup to a similar subgroup of Other Male

By tackling

Intersectional Bias

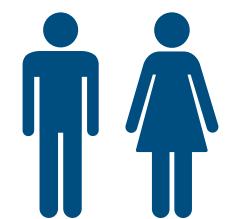
Multiple Definitions of Fairness



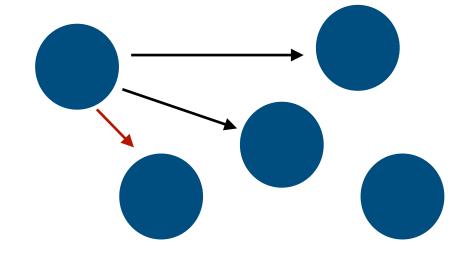
Fair Vis Enables users to find biases in their models

Allowing users to

Audit for **Known Biases**



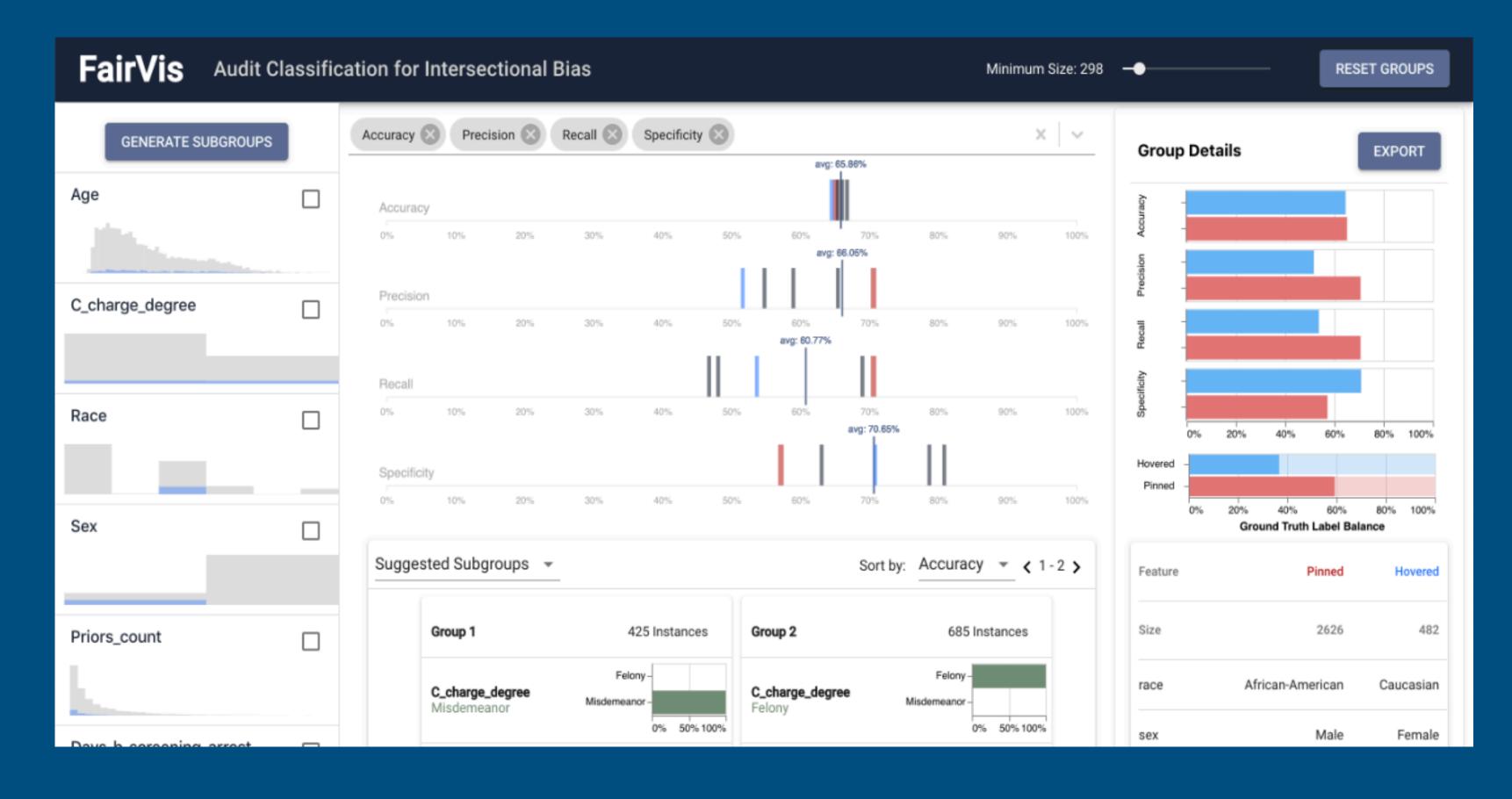
Explore Suggested & Similar Subgroups



FAIRWIS

Learn more at bit.ly/fairvis

Visual Analytics for Discovering Intersectional Bias in Machine Learning



Alex Cabrera
Carnegie Mellon

Will Epperson
Georgia Tech

Fred Hohman Georgia Tech

Minsuk Kahng
Oregon State

Jamie Morgenstern
University of Washington

Polo Chau Georgia Tech