
SUMMIT: Scaling Deep Learning Interpretability by
Visualizing Activation and Attribution Summarizations

Fred Hohman, Haekyu Park, Caleb Robinson, and Duen Horng (Polo) Chau

A Embedding ViewEmbedding View

B Class SidebarClass Sidebar

C Attribution Graph ViewAttribution Graph View
mixed5b

mixed5a

mixed4e

mixed4d

mixed4c

scales person

hands holding fish

fish

Fig. 1. With Summit, users can scalably summarize and interactively interpret deep neural networks by visualizing what features a
network detects and how they are related. In this example, INCEPTIONV1 accurately classifies images of tench (yellow-brown fish).
However, SUMMIT reveals surprising associations in the network (e.g., using parts of people) that contribute to its final outcome: the
“tench” prediction is dependent on an intermediate “hands holding fish” feature (right callout), which is influenced by lower-level features
like “scales,” “person,” and “fish”. (A) Embedding View summarizes all classes’ aggregated activations using dimensionality reduction.
(B) Class Sidebar enables users to search, sort, and compare all classes within a model. (C) Attribution Graph View visualizes
highly activated neurons as vertices (“scales,” “fish”) and their most influential connections as edges (dashed purple edges).

Abstract—Deep learning is increasingly used in decision-making tasks. However, understanding how neural networks produce final
predictions remains a fundamental challenge. Existing work on interpreting neural network predictions for images often focuses on
explaining predictions for single images or neurons. As predictions are often computed from millions of weights that are optimized over
millions of images, such explanations can easily miss a bigger picture. We present SUMMIT, an interactive system that scalably and
systematically summarizes and visualizes what features a deep learning model has learned and how those features interact to make
predictions. SUMMIT introduces two new scalable summarization techniques: (1) activation aggregation discovers important neurons,
and (2) neuron-influence aggregation identifies relationships among such neurons. SUMMIT combines these techniques to create
the novel attribution graph that reveals and summarizes crucial neuron associations and substructures that contribute to a model’s
outcomes. SUMMIT scales to large data, such as the ImageNet dataset with 1.2M images, and leverages neural network feature
visualization and dataset examples to help users distill large, complex neural network models into compact, interactive visualizations.
We present neural network exploration scenarios where SUMMIT helps us discover multiple surprising insights into a prevalent,
large-scale image classifier’s learned representations and informs future neural network architecture design. The SUMMIT visualization
runs in modern web browsers and is open-sourced.

Index Terms—Deep learning interpretability, visual analytics, scalable summarization, attribution graph

1 INTRODUCTION

Deep learning is increasingly used in decision-making tasks, due to
its high performance on previously-thought hard problems and a low

• Fred Hohman, Haekyu Park, Caleb Robinson, and Duen Horng Chau are
with Georgia Tech. E-mail: {fredhohman, haekyu, dcrobins,
polo}@gatech.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

barrier to entry for building, training, and deploying neural networks.
Inducing a model to discover important features from a dataset is a
powerful paradigm, yet this introduces a challenging interpretability
problem — it is hard for people to understand what a model has learned.
This is exacerbated in situations where a model could have impact
on a person’s safety, financial, or legal status [44]. Definitions of
interpretability center around human understanding, but they vary in the
aspect of the model to be understood: its internals [16], operations [6],
mapping of data [36], or representation [46]. Although recent work
has begun to operationalize interpretability [21], a formal, agreed-upon
definition remains open [10, 30].

Existing work on interpreting neural network predictions for im-

ages often focuses on explaining predictions for single images or neu-
rons [40, 41, 49, 53]. As large-scale model predictions are often com-
puted from millions of weights optimized over millions of images, such
explanations can easily miss a bigger picture. Knowing how entire
classes are represented inside of a model is important for trusting a
model’s predictions and deciphering what a model has learned [46],
since these representations are used in diverse tasks like detecting
breast cancer [33, 54], predicting poverty from satellite imagery [23],
defending against adversarial attacks [9], transfer learning [43, 59],
and image style transfer [15]. For example, high-performance models
can learn unexpected features and associations that may puzzle model
developers. Conversely, when models perform poorly, developers need
to understand their causes to fix them [24, 46]. As demonstrated in
Fig. 1, INCEPTIONV1, a prevalent, large-scale image classifier, accu-
rately classifies images of tench (yellow-brown fish). However, our
system, SUMMIT, reveals surprising associations in the network that
contribute to its final outcome: tench is dependent on an intermediate
person-related “hands holding fish” feature (right callout) influenced
by lower-level features like “scales,” “person,” and “fish”. There is a
lack of research in developing scalable summarization and interactive
interpretation tools that simultaneously reveal important neurons and
their relationships. SUMMIT aims to fill this critical research gap.

Contributions. In this work, we contribute:

• SUMMIT, an interactive system for scalable summarization and
interpretation for exploring entire learned classes in prevalent, large-
scale image classifier models, such as INCEPTIONV1 [56]. SUMMIT
leverages neural network feature visualization [11, 37, 38, 40, 50] and
dataset examples to distill large, complex neural network models into
compact, interactive graph visualizations (Sect. 7).

• Two new scalable summarization techniques for deep learning in-
terpretability: (1) activation aggregation discovers important neurons
(Sect. 6.1), and (2) neuron-influence aggregation identifies relation-
ships among such neurons (Sect. 6.2). These techniques scale to
large data, e.g., ImageNet ILSVRC 2012 with 1.2M images [47].

• Attribution graph, a novel way to summarize and visualize en-
tire classes, by combining our two scalable summarization tech-
niques to reveal crucial neuron associations and substructures that
contribute to a model’s outcomes, simultaneously highlighting what
features a model detects, and how they are related (Fig. 2). By using
a graph representation, we can leverage the abundant research in
graph algorithms to extract attribution graphs from a network that
show neuron relationships and substructures within the entire neural
network that contribute to a model’s outcomes (Sect. 6.3).

• An open-source, web-based implementation that broadens peo-
ple’s access to interpretability research without the need for ad-
vanced computational resources. Our work joins a growing body
of open-access research that aims to use interactive visualization
to explain complex inner workings of modern machine learning
techniques [25, 39, 52]. Our computational techniques for aggre-
gating activations, aggregating influences, generating attribution
graphs and their data, as well as the SUMMIT visualization, are
open-sourced1. The system is available at the following public demo
link: https://fredhohman.com/summit/.

Neural network exploration scenarios. Using SUMMIT, we investi-
gate how a widely-used computer vision model hierarchically builds
its internal representation that has merely been illustrated in previous
literature. We present neural network exploration scenarios where
SUMMIT helps us discover multiple surprising insights into a prevalent,
large-scale image classifier’s learned representations and informs future
neural network architecture design (Sect. 8).

Broader impact for visualization in AI. We believe our summariza-
tion approach that builds entire class representations is an important

1Visualization: https://github.com/fredhohman/summit.
Code: https://github.com/fredhohman/summit-notebooks.
Data: https://github.com/fredhohman/summit-data.

Neural Network
white wolf
Class Images

Attribution
Graph

pointy ear
white fur

white wolf

legs

Fig. 2. A high-level illustration of how we take thousands of images for
a given class, e.g., images from white wolf class, compute their top
activations and attributions, and combine them to form an attribution
graph that shows how lower-level features (“legs”) contribute to higher-
level ones (“white fur”), and ultimately the final outcome.

step for developing higher-level explanations for neural networks. We
hope our work will inspire deeper engagement from both the informa-
tion visualization and machine learning communities to further develop
human-centered tools for artificial intelligence [1, 39].

2 BACKGROUND FOR NEURAL NETWORK INTERPRETABILITY

Typically, a neural network is given an input data instance (e.g., an
image) and computes transformations on this instance until ultimately
producing a probability for prediction. Inside the network at each
layer, each neuron (i.e., channel) detects a particular feature from the
input. However, since deep learning models learn these features through
training, research in interpretability investigates how to make sense of
what specific features a network has detected. We provide an overview
of existing activation-based methods for interpretability, a common
approach to understand how neural networks operate internally that
considers the magnitude of each detected feature inside hidden layers.

2.1 Understanding Neuron Activations
Neuron activations as features for interpretable explanations.
There have been many approaches that use neuron activations as fea-
tures for interpretable explanations of neural network decisions. TCAV
vectorizes activations in each layer and uses the vectors in a binary clas-
sification task for determining an interpretable concept’s relevance (e.g.,
striped pattern) in model’s decision for a specific class (e.g., zebra) [27].
Network Dissection [4] and Net2Vec [12] propose methods to quantify
interpretability by measuring alignment between filter activations and
concepts. ActiVis visualizes activation patterns in an interactive table
view, where the columns are neurons in a network and rows are data
instances [24]. This table unifies instance-level and subset-level analy-
sis, which enables users to explore inside neural networks and visually
compare activation patterns across images, subsets, and classes.

Visualizing neurons with their activation. Instead of only consid-
ering the magnitude of activations, another technique called feature
visualization algorithmically generates synthetic images that maximize
a particular neuron [7, 11, 37, 38, 40, 50]. Since these feature visual-
izations optimize over a single neuron, users can begin to decipher
what feature a single neuron may have learned. These techniques have
provided strong evidence of how neural networks build their internal hi-
erarchical representations [60]. Fig. 3 presents widely shared examples
of how neural networks learn hierarchical features by showing neuron
feature visualizations. It is commonly thought that neurons in lower
layers in a network learn low-level features, such as edges and textures,
while neurons in later layers learn more complicated parts and objects,
like faces (Fig. 3). In our work, we crystallize this belief by leveraging
feature visualization to identify what features a model has detected, and
how they are related.

2.2 Towards Higher-level Deep Learning Interpretation
It is not uncommon for modern, state-of-the-art neural networks to
contain hundreds of thousands of neurons; visualizing all of them is
ineffective. To address this problem, several works have proposed to
extract only “important” neurons for a model’s predictions [7, 31, 41].
For example, Blocks, a visual analytics system, shows that class confu-
sion patterns follow a hierarchical structure over the classes [5], and
Activation Atlases, large-scale dimensionality reductions, show many

https://fredhohman.com/summit/
https://github.com/fredhohman/summit
https://github.com/fredhohman/summit-notebooks
https://github.com/fredhohman/summit-data

averaged activations [7]. Both visualizations reveal interesting proper-
ties of neural networks. However, they either (1) consider activations
independent of their learned connections, (2) depend on randomized
sampling techniques, or (3) are computationally expensive. SUMMIT
addresses these issues by: (1) combining both activations and relation-
ships between network layers, as only knowing the most important
neurons is not sufficient for determining how a model made a predic-
tion — the relationships between highly contributing neurons are key
to understanding how learned features are combined inside a network;
(2) leveraging entire datasets; and (3) integrating scalable techniques.

Since feature visualization has shown that neurons detect more com-
plicated features towards a network’s output, it is reasonable to hypoth-
esize that feature construction is the collaborative combination of many
different features from previous layers [4, 12, 48]. Our visualization
community has started to investigate this hypothesis. For example,
one of the earlier visual analytics approaches, CNNVis, derives neuron
connections for model diagnosis and refinement, but did not scale to
large datasets with many classes [32]. In the context of adversarial
machine learning, AEVis uses backpropagation to identify where in a
network the data paths of a benign and attacked instance diverge [31].
AEVis demonstrates its approach on single and small sets of images;
it is unclear how the approach’s integral approximation optimization
techniques scale to large, entire datasets, such as ImageNet. Another
example, Building Blocks, proposes to use matrix factorization to group
sets of neurons together within a layer and derive “compatible” neuron
groups across layers [41]; however, the work suggests uncertainty in
the proposed formulation. Our work draws inspirations from the above
important prior research in neural network visualization. Our method
makes advances to scale to large million-image datasets, providing
new ways to interpret entire classes (vs. single-image explanations) by
aggregating activations and influences across the model.

2.3 Visual Analytics for Interpretability
To better facilitate interpretability, interactive visual analytics solutions
have been proposed to help different user groups interpret models using
a variety of interactive and visualization techniques [22]. Predictive
visual analytics supports experts conducting performance analysis of
machine learning models by visualizing distributions of predicted in-
stances, computing feature importance, and directly inspecting model
and instance errors to support debugging [2, 21, 34, 45, 58]. Interactive
visualization for explaining models to non-experts using direct manipu-
lation has also seen attention due to the pervasiveness of machine learn-
ing in modern society and general interest from the public [19, 25, 52].

3 DESIGN CHALLENGES

Our goal is to build an interactive visualization tool for users to better
understand how neural networks build their hierarchical representation.
To develop our summarization techniques and design SUMMIT, we
identified five key challenges.

Ex. LeCun, 2015

Fig. 3. A common, widely shared example illustrating how neural net-
works learn hierarchical feature representations. Our work crystallizes
these illustrations by systematically building a graph representation that
describe what features a model has learned and how they are related.
We visualize features learned at individual neurons and connect them
to understand how high-level feature representations are formed from
lower-level features. Ex. taken from Yann LeCun, 2015.

C1. SCALABILITY Scaling up explanations and representations to
entire classes, and ultimately, datasets of images. Much of
the existing work on interpreting neural networks focuses on
visualizing the top independent activations or attributions for a
single image [40, 41, 49, 53]. While this can be useful, it quickly
becomes tiresome to inspect these explanations for more than a
handful of images. Furthermore, since every image may contain
different objects, to identify which concepts are representative of
the learned model for a specific class, users must compare many
image explanations together to manually find commonalities.

C2. INFLUENCE Discovering influential connections in a network
that most represents a learned class. In dense neural network
models, scalar edge weights directly connect neurons in a pre-
vious layer to neurons in a following layer; in other words, the
activation of single neuron is expressed as a weighted sum of the
activations from neurons in the previous layer [17]. However,
this relationship is more complicated in convolutional neural net-
works. Images are convolved to form many 2D activation maps,
that are eventually summed together to form the next layers acti-
vations. Therefore, it becomes non-trivial to determine the effect
of a single convolutional filter’s effect on later layers.

C3. VISUALIZATION Synthesizing meaningful, interpretable visual-
izations with important channels and influential connections.
Given a set of top activated neurons for a collection of images,
and the impact convolutional filters have on later layers, how
do we combine these approaches to form a holistic explanation
that describes an entire class of images? Knowing how entire
classes are represented inside of a model is important for trusting
a model’s predictions [46], aiding decision making in disease
diagnosis [33, 54], devising security protocols [9], and fixing
under-performing models [24, 46].

C4. INTERACTION Interactive exploration of hundreds of learned
class representations in a model. How do we support interactive
exploration and interpretation of hundreds or even thousands of
classes learned by a prevalent, large-scale deep learning model?
Can an interface support both high-level overviews of learned
concepts in a network, while remaining flexible to support filtering
and drilling down into specific features? Whereas C1 focuses on
the summarization approaches to scale up representations, this
challenge focuses on interaction approaches for users to work
with the summarized representations.

C5. RESEARCH ACCESS High barrier of entry for understanding
large-scale neural networks. Currently, deep learning models
require extensive computational resources and time to train and
deploy. Can we make understanding neural networks more acces-
sible without such resources, so that everyone has the opportunity
to learn and interact with deep learning interpretability?

4 DESIGN GOALS

Based on the identified design challenges (Sect. 3), we distill the fol-
lowing main design goals for SUMMIT, an interactive visualization
system for summarizing what features a neural network has learned.

G1. Aggregating activations by counting top activated channels.
Given the activations for an image, we can view them channel-
wise, that is, a collection of 2D matrices where each encodes the
magnitude of a detected feature by that channel’s learned filter.
We aim to identify which channels have the strongest activation
for a given image, so that we can record only the topmost activated
channels for every image, and visualize which channels, in ag-
gregate, are most commonly firing a strong activation (C1). This
data could then be viewed as a feature of vector for each class,
where the features are the counts of images that had a specific
channel as a top channel (Sect. 6.1).

G2. Aggregating influences by counting previous top influential
channels. We aim to identify the most influential paths data takes
throughout a network. If aggregated for every image, we could use
intermediate outputs of the fundamental convolutional operation

used inside of CNNs (C2) to help us determine which channels
in a previous layer have the most impact on future channels for a
given class of images (Sect. 6.2).

G3. Finding what neural networks look for, and how they inter-
act. To visualize how low-level concepts near early layers of a
network combine to form high-level concepts towards later layers,
we seek to form a graph from the entire neural network, using the
aggregated influences as an edge list and aggregated activations
as vertex values. With a graph representation, we could leverage
the abundant research in graph algorithms, such as Personalized
PageRank, to extract a subgraph that best captures the important
vertices (neural network channels) and edges (influential paths) in
the network (Sect. 6.3). Attribution graphs would then describe
the most activated channels and attributed paths between channels
that ultimately lead the network to a final prediction (C3).

G4. Interactive interface to visualize classes attribution graphs of
a model. We aim to design and develop an interactive interface
that can visualize entire attribution graphs (Sect. 7). Our goal is
to support users to freely inspect any class within a large neural
network classifier to understand what features are learned and
how they relate to one another to make predictions for any class
(C4). Here, we also want to use state-of-the-art deep learning
visualization techniques, such as pairing feature visualization with
dataset examples, to make channels more interpretable (Sect. 7.3).

G5. Deployment using cross-platform, lightweight web technolo-
gies. To develop a visualization that is accessible for users without
specialized computational resources, in SUMMIT we use modern
web browsers to visualize attribution graphs (Sect. 7). We also
open-source our code to support reproducible research (C5).

5 MODEL CHOICE AND BACKGROUND

In this work, we demonstrate our approach on INCEPTIONV1 [56], a
prevalent, large-scale convolutional neural network (CNN) that achieves
top-5 accuracy of 89.5% on the ImageNet dataset that contains over 1.2
millions images across 1000 classes. INCEPTIONV1 is composed of
multiple inception modules: self-contained groups of parallel convolu-
tional layers. The last layer of each inception module is given a name of
the form “mixed{number}{letter},” where the {number} and {letter}
denote the location of a layer in the network; for example, mixed3b
(an earlier layer) or mixed4e (a later layer). In INCEPTIONV1, there
are 9 such layers: mixed3{a,b}, mixed4{a,b,c,d,e}, and mixed5{a,b}.
While there are more technical complexities regarding neural network
design within each inception module, we follow existing interpretability
literature and consider the 9 mixed layers as the primary layers of the
network [40, 41]. Although our work makes this model choice, our
proposed summarization and visualization techniques can be applied to
other neural network architectures in other domains.

6 CREATING ATTRIBUTION GRAPHS BY AGGREGATION

SUMMIT introduces two new scalable summarization techniques: (1)
activation aggregation discovers important neurons, and (2) neuron-
influence aggregation identifies relationships among such neurons.
SUMMIT combines these techniques to create the novel attribution
graph that reveals and summarizes crucial neuron associations and
substructures that contribute to a model’s outcomes. Attribution graphs
tell us what features a neural network detects, and how those features
are related. Below, we formulate each technique, and describe how we
combine them to generate attribution graphs (Sect. 6.3) for CNNs.

6.1 Aggregating Neural Network Activations

We want to understand what a neural network is detecting in a dataset.
We propose summarizing how an image dataset is represented through-
out a CNN by aggregating individual image activations at each channel
in the network, over all of the images in a given class. This aggregation
results in a matrix, Al for each layer l in a network, where an entry Al

c j

roughly represents how important channel j (from the lth layer) is for

representing images from class c. This measure of importance can be
defined in multiple ways, which we discuss formally below.

A convolutional layer contains Cl image kernels (parameters) that
are convolved with an input image, X , to produce an output image, Y ,
that contains Cl corresponding channels. For simplicity, we assume
that the hyperparameters of the convolutional layer are such that X and
Y will have the same height H and width W , i.e., X ∈ RH×W×Cl−1 and
Y ∈ RH×W×Cl . Each channel in Y is a matrix of values that represent
how strongly the corresponding kernel activated in each spatial position.
For example, an edge detector kernel will produce a channel, also called
an activation map, that has larger values at locations where an edge
is present in the input image. As kernels in convolutional layers are
learned during model training, they identify different features that
discriminate between different image classes. It is commonly thought
that CNNs build hierarchical feature representations of input images,
learning simple edge and shape detectors in early layers of the network,
which are combined to form texture detectors, and finally relevant
object detectors in later layers of the network [60] (see Fig. 3).

A decision must be made on how to aggregate activations over spatial
locations in a channel and aggregate activations over all images in a
given class. Ultimately, we want to determine channel importance
in a CNN’s representation of a class. As channels roughly represent
concepts, we choose the maximum value of a channel as an indicator
of how strongly a concept is present, instead of other functions, such as
mean, that may dampen the magnitude of relevant channels.

Alongside Fig. 4, our method for aggregation is as follows:
• Compute activation channel maximums for all images. For each

image, (A1) obtain its activations for a given layer l and (A2) com-
pute the maximum value per channel. This is equivalent to perform-
ing Global Max-pooling at each layer in the network. Now for each
layer, we will have a matrix Zl , where an entry Zl

i j represents the
maximum activation of image i over the jth channel in layer l.

• Filter by a particular class. We consider all rows of Zl whose
images belong to the same class, and want to aggregate the maxi-
mum activations from these rows to determine which channels are
important for detecting the class.

• Aggregation Method 1: taking top kM1 channels. For each row,
we set the top kM1 largest elements to 1 and others to 0, then sum
over rows. Performing this operation for each class in our dataset
will result in a matrix Al from above where an entry Al

c j is the count
of the number of times that the jth channel is one of the top kM1
channels by maximum activation for all images in class c. This
method ignores the actual maximum activation values, so it will not
properly handle cases where a single channel activates strongly for
images of a given class (as it will consider kM1−1 other channels),
or cases where many channels are similarly activated over images of
a given class (as it will only consider kM1 channels as “important”).
This observation motivates our second method.

• Aggregation Method 2: taking top kM2% of channels by weight.
We first scale rows of Zl to sum to 1 by dividing by the row sums,

Z′li j =
Zl

i j

∑
N
n=1 Zl

n j
, where N is the number of images. Instead of setting the

top kM2 elements to 1, as in Method 1, we set the m largest elements
of each row to 1 and the remaining to 0. Here, m is the largest index
such that ∑

m
j∈sorted Z′li

Z′li j ≤ kM2, where kM2 is some small percentage.
In words, this method first sorts all channels by their maximum
activations, then records channels, starting from the largest activated,
until the cumulative sum of probability weight from the recorded
channels exceeds the threshold. Contrary to Method 1, this method
adaptively chooses channels that are important for representing a
given image, producing a better final class representation.

Empirically, we noticed the histograms of max channel activations
was often power law distributed, therefore we use Method 2 to (A3)
record the top kM2 = 3% of channels to include in the (A4) Aggregated
Activations matrix Al . In terms of runtime, this process requires only
a forward pass through the network.

sorted channels in l

ac
tiv

at
io
n

in
flu

en
ce

sorted channels in l-1

channels in l

cl
as

se
s

record top channels in l

white wolf

Convolutional
neural network

conv. kernel
for channel 555*

activations for l

activations for l-1

max ((

Aggregating
Activations

Aggregated
Activation Matrix

Aggregated
Influence Matrix

Aggregating
Influences

white
wolf

101 304 642

channels in l

cl
as

se
s

record top channels in l-1
for channel 555 in l

white
wolf

555

max ((

A

A1

A2
A3

A4

I5

I4

I3

I2
I1

I

ll
l-1l-1

l+1l+1

Fig. 4. Our approach for aggregating activations and influences for a layer l. Aggregating Activations: (A1) given activations at layer l, (A2)
compute the max of each 2D channel, and (A3) record the top activated channels into an (A4) aggregated activation matrix, which tells us which
channels in a layer most activate and represent every class in the model. Aggregating Influences: (I1) given activations at layer l−1, (I2) convolve
them with a convolutional kernel from layer l, (I3) compute the max of each resulting 2D activation map, and (I4) record the top most influential
channels from layer l−1 that impact channels in layer l into an (I5) aggregated influence matrix, which tells us which channels in the previous layer
most influence a particular channel in the next layer.

6.2 Aggregating Inter-layer Influences

Aggregating activations at each convolutional layer in a network will
only give a local description of which channels are important for each
class, i.e., from examining Al we will not know how certain channels
come to be the most representative for a given class. Thus, we need a
way to calculate how the activations from the channels of a previous
layer, l−1, influence the activations at the current layer, l. In dense
layers, this influence is trivial to compute: the activation at a neuron
in l is computed as the weighted sum of activations from neurons in
l−1. The influence of a single neuron from l−1 is then proportional
to the activation of that neuron multiplied by the associated weight to
the neuron being examined from l. In convolutional layers, calculating
this influence is more complicated: the activations at a channel in l are
computed as the 3D convolution of all of the channels from l−1 with
a learned kernel tensor. This operation can be broken down (shown
formally later in this section) as a summation of the 2D convolutions
of each channel in l−1 with a corresponding slice of the appropriate
kernel. The summations of 2D convolutions are similar in structure
to the weighted-summations performed by dense layers, however the
corresponding “influence” of a single channel from l−1 on the output
of a particular channel in l is a 2D feature map. We can summarize this
feature map into a scalar influence value by using any type of reduce
operation, which we discuss further below.

We propose a method for (1) quantifying the influence a channel from
a previous layer has on the activations of a channel in a following layer,
and (2) aggregating influences into a tensor, Il , that can be interpreted
similarly to the Al matrix from the previous section. Formally, we want
to create a tensor Il for every layer l in a network, where an entry Il

ci j
represents how important channel i from layer l−1 is in determining
the output of channel j in layer l, for all images in class c.

First, using the notation from the previous section, we consider
how a single channel of Y is created from the channels of X . Let
K(j) ∈ RH×W×Cl−1 be the jth kernel of our convolutional layer. Now
the operation of a convolutional layer can be written as:

Y:,:, j = X ∗K(j)

︸ ︷︷ ︸
3D convolution

=
Cl−1

∑
i=1

X:,:,i ∗K(j)
:,:,i︸ ︷︷ ︸

2D convolution

(1)

In words, (I1) each channel from X is (I2) convolved with a slice of

the jth kernel, and the resulting maps are summed to produce a single
channel in Y . We care about the 2D quantity X:,:,i ∗K(j)

:,:,i as it contains
exactly the contributions of a single channel from the previous layer to
a channel in the current layer.

Second, we must summarize the quantity X:,:,i ∗K(j)
:,:,i into a scalar

influence value. Similarly discussed in Sect. 6.1, this can be done in
many ways, e.g., by summing all values, applying the Frobenius norm,
or taking the maximum value. Each of these summarization methods
(i.e., 2D to 1D reduce operations) may lend itself well to exposing
interesting connections between channels later in our pipeline. We
chose to (I3) take the maximum value of X:,:,i ∗K(j)

:,:,i as our measure
of influence for the image classification task, since this task intuitively
considers the largest magnitude of a feature, e.g., how strongly a “dog
ear” or “car wheel” feature is expressed, instead of summing values for
example, which might indicate how many places in the image a “dog
ear” or “car wheel” is being expressed. Also, this mirrors our approach
for aggregating activations above.

Lastly, we must aggregate these influence values between channel
pairs in consecutive layers, for all images in a given class, i.e., create
the proposed Il matrix from the pairwise channel influence values. This
process mirrors the aggregation described previously (Sect. 6.1), and
we follow the same framework. Let Ll

i j be the scalar influence value
computed by the previous step for a single image in class c, between
channel i in layer l−1 and channel j in layer l. We increment an entry
(c, i, j) in the tensor Il

ci j if Ll
i j is one of the top kM1 largest values in the

column Ll
:, j (mirroring Method 1 from Sect. 6.2), or if Ll

i j is in the top
kM2% of largest values in Ll

:, j (mirroring Method 2 (Sect. 6.1).
Empirically, we noticed the histograms of max influence values were

not as often power law distributed as in the previous aggregation of
activations, therefore we use Method 1 to (I4) record the top kM1 = 5
channels to include in the (I5) Aggregated Influence matrix Il . Note
that INCEPTIONV1 contains inception modules, groups of branching
parallel convolution layers. Our influence aggregation approach han-
dles these layer depth imbalances by merging paths using the minimum
of any two hop edges through an inner layer; this guarantees all edge
weights between two hop channels are maximal. In terms of runtime,
this process is more computationally expensive than aggregating activa-
tions, since we have to compute all intermediate 2D activation maps;

however, with a standard GPU equipped machine is sufficient. We
discuss our experimental setup later in Sect. 7.4.

6.3 Combining Aggregated Activations and Influences to
Generate Attribution Graphs

Given the aggregated activations Al and aggregated influences Il we aim
to combine them into a single entity that describes both what features a
neural network is detecting and how those features are related. We call
these attribution graphs, and we describe their generation below.

In essence, neural networks are directed acyclic graphs: they take
input data, compute transformations of that data at sequential layers
in the network, and ultimately produce an output. We can leverage
this graph structure for our desired representation. Whereas a common
network graph has vertices and connecting edges, our vertices will be
the channels of a network (for all layers of the network), and edges
connect channels if the channel in the previous layer has a strong
influence to a channel in an later, adjacent layer.

Using graph algorithms for neural network interpretability.
Consider the aggregated influences Il as an edge list; therefore, we
can build an “entire graph” of a neural network, where edges encode if
an image had a path from one channel to another as a top influential
path, and the weight of an edge is a count of the number of images for
a given class with that path as a top influential path. Now, for a given
class, we want to extract the subgraph that best captures the important
vertices (channels) and edges (influential paths) in the network. Since
we have instantiated a typical network graph, we can now leverage
the abundant research in graph algorithms. A natural fit for our task
is the Personalized PageRank algorithm [29, 42], which scores each
vertex’s importance in a graph, based on both the graph structure and
the weights associated with the graph’s vertices and edges. Specifi-
cally, SUMMIT operates on the graph produced from all the images
of a given class; the algorithm is initialized by and incorporates both
vertex information (aggregated activations Al) and edge information
(aggregated influences Il) to find a subgraph most relevant for all the
provided images. We normalize each layer’s personalization from Al

by dividing by max Al value for each layer l so that each layer has a
PageRank personalization within 0 to 1. This is required since each
layer has a different total number of possible connections (e.g., the first
and last layers, mixed3a and mixed5b, only have one adjacent layer,
therefore their PageRank values would be biased small). In summary,
we make the full graph of a neural network where vertices are channels
from all layers in the network with a personalization from Al , and edges
are influences with weights from Il .

Extracting attribution graphs. After running Personalized PageR-
ank for 100 iterations, the last task is to select vertices based on their
computed PageRank values to extract an attribution graph. There are
many different ways to do this; below we detail our approach. We first
compute histograms of the PageRank vertex values for each layer. Next,
we use the methodology described in Sect. 6.1 for Method 2, where
we continue picking vertices with the largest PageRank value until we
have reached kM2% weight for each layer independently. Empirically,
here we set kM2 = 7.5% after observing that the PageRank value his-
tograms are roughly power law, indicating that there are only a handful
of channels determined important. Regarding the runtime, the only
relevant computation is running PageRank on the full neural network
graph, which typically has a few thousands vertices and a few hundred
thousand edges. Using the Python NetworkX2 implementation [29,42],
Personalized PageRank runs in ∼ 30 seconds for each class.

7 THE SUMMIT USER INTERFACE

From our design goals in Sect. 4 and our aggregation methodology
in Sect. 6, we present SUMMIT, an interactive system for scalable
summarization and interpretation for exploring entire learned classes in
large-scale image classifier models (Fig. 1).

The header of SUMMIT displays metadata about the visualized image
classifier, such as the model and dataset name, the number of classes,
and the total number data instances within the dataset. As described

2NetworkX: https://networkx.github.io/

in Sect. 5, here we are using INCEPTIONV1 trained on the 1.2 million
image dataset ImageNet that contains 1000 classes. Beyond the header,
the SUMMIT user interface is composed of three main interactive views:
the Embedding View, the Class Sidebar, and the Attribution Graph
View. The following section details the representation and features of
each view and how they tightly interact with one another.

7.1 Embedding View: Learned Class Overview
The first view of SUMMIT is the Embedding View, a dimensionality
reduction overview of all the classes in a model (Fig. 1A). Given some
layer l’s Al matrix, recall an entry in this matrix corresponds to the
number of images from one class (row) that had one channel (column)
as a top channel. We can consider A as a feature matrix for each class
where the number of channels in a layer corresponds to the number of
features. For reduction and visualization, the Embedding View uses
UMAP: a non-linear dimensionality reduction that better preserves
global data structure, compared to other techniques like t-SNE, and
often provides a better “big picture” view of high-dimensional data
while preserving local neighbor relations [35]. Each dot corresponds to
one class of the model, with spatial position encoding their similarity.
To explore this embedding, users can freely zoom and pan in the view,
and when a user zooms in close enough, labels appear to describe
each class (point) so users can easily see how classes within the model
compare. Clicking on a point in the Embedding View will update the
selection for the remaining views of SUMMIT, as described below.

Fig. 5. Selectable network minimap
animates the Embedding View.

Selectable neural network
minimap. At the top of the
Embedding View sits a small
visual representation of the con-
sidered neural network; in this
case, INCEPTIONV1’s primary
mixed layers are shown (Fig. 5). Since we obtain one Al matrix for
every layer l in the model, to see how the classes related to one another
at different layer depths within the network, users can click on one of
the other layers to animate the Embedding View. This is useful for
obtaining model debugging hints and observing at a high-level how
classes are represented throughout a network’s layers.

7.2 Class Sidebar: Searching and Sorting Classes

class

similarity

accuracy

probabilities(to selected class)

Fig. 6. Class Sidebar visual encoding.

Underneath the Embedding
View sits the Class Sidebar
(Fig. 1B): a scrollable list
of all the class of the model,
containing high-level class
performance statistics. The
first class at the top of the list is the selected class, whose attribution
graph is shown in the Attribution Graph View, to be discussed in the
next section. The Class Sidebar is sorted by the similarity of the selected
class to all other classes in the model. For the similarity metric, we
compute the cosine similarity using the values from Al . Each class is
represented as a horizontal bar that contains the class’s name, a purple
colored bar that indicates its similarity to the selected class (longer
purple bars indicate similar classes, and vice versa), the class’s top-1
accuracy for classification, and a small histogram of all the images’
predicted probabilities within that class (i.e., the output probabilities
from the final layer) (Fig. 6). From this small histogram, users can
quickly see how well a class performs. For example, classes with power
law histograms indicate high accuracy, whereas classes with normal
distribution histograms indicate underperformance. Users can then
hypothesize whether a model may be biasing particular classes over
others, or if underperforming classes have problems with their raw data.

Scrolling for context. To see where a particular class in the sidebar
is located in the Embedding View, users can hover over a class to
highlight its point and label the Embedding View above (Fig. 1A-B).
Since the Class Sidebar is sorted by class similarity, to see where
similar classes lie compared to the selected class, all classes in the
Class Sidebar visible to the user (more technically, in the viewbox of
the interface) are also highlighted in the Embedding View (Fig. 1A-B).
Scrolling then enables users to quickly see where classes in the Class

https://networkx.github.io/

Sidebar lie in the Embedding View as classes become less similar to
the originally selected class to visualize.

Sorting and selecting classes. To select a new class to visualize,
users can click on any class in the Class Sidebar to update the interface,
including resorting the Class Sidebar by similarity based on the newly
selected class and visualize the new class’s attribution graph in the
Attribution Graph View. Users can also use the search bar to directly
search for a known class instead of freely browsing the Class Sidebar
and Embedding View. Lastly, the Class Sidebar has two additional
sorting criteria. Users can sort the Class Sidebar by the accuracy, either
ascending or descending, to see which classes in the model have the
highest and lowest predicted accuracy, providing a direct mechanism to
begin to inspect and debug underperforming classes.

7.3 Attribution Graph View: Visual Class Summarization
The Attribution Graph View is the main view of SUMMIT (Fig. 1C). A
small header on top displays some information about the class, similar
to that in the Class Sidebar, and contains a few controls for interacting
with the attribution graph, to be described later.

Visualizing attribution graphs. Recall from Sect. 6.3 that an at-
tribution graph is a subgraph of the entire neural network, where the
vertices correspond to a class’s important channels within a layer, and
the edges connect channels based on their influence from the convolu-
tion operation. Our graph visualization design draws inspiration from
recent visualization works, such as CNNVis [32], AEVis [31], and
Building Blocks [41], that have successfully leveraged graph based
representations for deep learning interpretability. In the main view of
SUMMIT, an attribution graph is shown in a zoomable and panable can-
vas that visualizes the graph vertically, where the top corresponds to the
last mixed network layer in the network, mixed5b, and the bottom layer
corresponds to the first mixed layer, mixed3a (Fig. 1C). In essence,
the attribution graph is a directed network with vertices and edges; in
SUMMIT, we replace vertices with the corresponding channel’s feature
visualization. Each layer, denoted by a label, is a horizontal row of fea-
ture visualizations of the attribution graph. Each feature visualization is
scaled by its magnitude of the number of images within that class that
had that channel as a top channel in their prediction, i.e., the value from
Al . Edges are drawn connecting each channel to visualize the important
paths data takes during prediction. Edge thickness is encoded by the
influence from one channel to another, i.e., the value from Il .

Understanding attribution graph structure. This novel visualiza-
tion reveals a number of interesting characteristics about how classes
behave inside a model. First, it shows how neural networks build up
high-level concepts from low-level features, for example, in the white
wolf class, early layers learn fur textures, ear detectors, and eye de-
tectors, which all contribute to form face and body detectors in later
layers. Second, the number of visualized channels per layer roughly in-
dicates how many features are needed to represent that class within the
network. For example, in layer mixed5a, the strawberry class only has
a few large channels, indicating this layer has learned specific object
detectors for strawberries already, whereas in the same layer, the drum
class has many smaller channels, indicating that this layer requires the
combination of multiple object detectors working together to represent
the class. Third, users can also see the overall structure of the attribu-
tion graph, and how a model has very few important channels in earlier
layers, but as the the network progress, certain channels grow in size
and begin to learn high-level features about what an image contains.

Inspecting channels and connections in attribution graphs. Be-
sides displaying the feature visualization at each vertex, there are a
number of different complementary data that is visualized to help inter-
pret what a model has learned for a given class attribution graph. It has
been shown that for interpreting channels in a neural network, feature
visualization is not always enough [40]; however, displaying example
image patches from the entire dataset next to a feature visualization
helps people better understand what the channel is detecting. We apply
a similar approach, where hovering over a channel reveals 10 image
patches from the entire dataset that most maximize this specific channel
(Fig. 1C). Pairing feature visualization with dataset examples helps
understand what the channel is detecting in the case where a feature

visualization alone is hard to decipher. When a user hovers over a
channel, SUMMIT also highlights the edges that flow in and out of that
specific channel by coloring the edges and animating them within the
attribution graph. This is helpful for understanding which and how
much channels in a previous layer contribute to a new channel in a later
layer. Users can also hover over the edges of an attribution graph to
color and animate that specific edge and its endpoint channels, similar
to the interaction used when hovering over channels. Lastly, users can
get more insight into what feature a specific channel has learned by hov-
ering left to right on a channel to see the feature visualization change
to display four other feature visualizations generated with diversity: a
technique used to create multiple feature visualizations for a specific
channel at once that reveals different areas of latent space that a channel
has learned [40]. This interaction is inspired from commercial photo
management applications where users can simply hover over an image
album’s thumbnail to quickly preview what images are are inside.

Dynamic drill down and filtering. When exploring an attribution
graph, users can freely zoom and pan the entire canvas, and return to the
zoomed-out overview of the visualization via a button included in the
options bar above the attribution graph. In the case of a large attribution
graph where there are too many channels and edges, in the options bar
there is a slider that when dragged, filters the the channels of the attri-
bution graph by their importance from Al . This interaction technique
draws inspiration from existing degree-of-interest graph exploration
research, where users can dynamically filter and highlight a subset of
the most important channels (vertices) and connections (edges) based
on computed scores [8, 14, 26, 57]. Dragging the slider triggers an
animation where the filtered-out channels and their edges are removed
from the attribution graph, and the remaining visualization centers it-
self for each layer. With the additional width and height sliders, these
interactions add dynamism to the attribution graph, where it fluidly
animates and updates to users deciding the scale of the visualization.

7.4 System Design
To broaden access to our work, SUMMIT is web-based and can be
accessed from any modern web-browser. SUMMIT uses the standard
HTML/CSS/JavaScript stack, and D3.js3 for rendering SVGs. We ran
all our deep learning code on a NVIDIA DGX 1, a workstation with 8
GPUs, with 32GB of RAM each, 80 CPU cores, and 504GB of RAM.
With this machine we could generate everything required for all 1000
ImageNet classes—aggregating activations, aggregating influences, and
combining them with PageRank (implementation from NetworkX) to
form attribution graphs—and perform post-processing under 24 hours.
However, visualizing a single class on one GPU takes only a few
minutes. The Lucid library is used for creating feature visualizations4,
and dataset examples are used from the appendix5 of [40].

8 NEURAL NETWORK EXPLORATION SCENARIOS

8.1 Unexpected Semantics Within a Class
A problem with deploying neural networks in critical domains is their
lack of interpretability, specifically, can model developers be confident
that their network has learned what they think it has learned? We can
answer perplexing questions like these with SUMMIT. For example, in
Fig. 1, consider the tench class (a type of yellow-brown fish). Starting
from the first layer, as we explore the attribution graph for tench we
notice there are no fish or water feature, but there are many “finger”,
“hand”, and “people” detectors. It is not until a middle layer, mixed4d,
that the first fish and scale detectors are seen (Fig. 1C, callout); however,
even these detectors focus solely on the body of the fish (there is no fish
eye, face, or fin detectors). Inspecting dataset examples reveals many
image patches where we see people’s fingers holding fish, presumably
after catching them. This prompted us to inspect the raw data for
the tench class, where indeed, most of the images are of a person
holding the fish. We conclude that, unexpectedly, the model uses
people detectors and in combination with brown fish body and scale

3D3.js: https://d3js.org/
4Lucid: https://github.com/tensorflow/lucid
5https://github.com/distillpub/post--feature-visualization

https://d3js.org/
https://github.com/tensorflow/lucid
https://github.com/distillpub/post--feature-visualization

mixed4e,
unit 767

mixed5a,
unit 813

orange fish

Attribution graph substructure in lionfish class.

mixed4e,
unit 791

quill

stripes

Fig. 7. An example substructure from the lionfish attribution graph that
shows unexpected texture features, like “quills” and “stripes,” influencing
top activated channels for a final layer’s “orange fish” feature (some lion
fish are reddish-orange, and have white fin rays).

detectors to represent the tench class. Generally, we would not expect
“people” as an essential feature for classifying fish.

This surprising finding motivated us to seek another class of fish that
people do not normally hold to compare against, such as a lionfish (due
to their venomous spiky fin rays). Visualizing the lionfish attribution
graph confirms our suspicion (Fig. 7): there are not any people object
detectors in its attribution graph. However, we discover yet another
unexpected combination of features: there are few fish part detectors
while there are many texture features, e.g., stripes and quills. It is not
until the final layers of the network where a highly activated channel
detects orange fish in water, which uses the stripe and quill detectors.
Therefore we deduce that the lionfish class is composed of a striped
body in the water with long, thin quills. Whereas the tench had unex-
pected people features, the lionfish lacked fish features. Regardless,
findings such as these can help people more confidently deploy models
when they know what composition of features results in a prediction.

8.2 Mixed Class Association Throughout Layers
While inspecting the Embedding View, we noticed some classes’ em-
bedding positions shift greatly between adjacent layers. This cross-
layer embedding comparison is possible since each layer’s embedding
uses the previous layer’s embedding as an initialization. Upon inspec-
tion, the classes that changed the most were classes that were either a
combination of existing classes or had mixed primary associations.

For example, consider the horsecart class. For each layer, we can
inspect the nearest neighbors of horsecart to check its similarity to
other classes. We find that horsecart in the early layers is similar to
other mechanical classes, e.g., harvester, thresher, and snowplow. This
association shifts in the middle layers where horsecart moves to be
near animal classes, e.g., bison, wild boar, and ox. However, horsecart
flips back at the final convolutional layer, returning to a mechanical
association (Fig. 8, top). To better understand what features compose
a horsecart, we inspect its attribution graph and find multiple features
throughout all the layers that contain people, spoke wheels, horse hips,
and eventually horse bodies with saddles and mechanical gear (Fig. 8,
bottom). Mixed semantic classes like horsecart allow us to test if cer-
tain classes are semantic combinations of others and probe deeper into
understanding how neural networks build hierarchical representations.

8.3 Discriminable Features in Similar Classes
Since neural networks are loosely inspired by the human brain, in the
broader machine learning literature there is great interest to understand
if decision rationale in neural networks is similar to that of humans.
With attribution graphs, we can further to answer this question by
comparing classes throughout layers of a network.

For example, consider the black bear and brown bear classes. A
human would likely say that color is the discriminating difference
between these classes. By taking the intersection of their attribution
graphs, we can see what features are shared between the classes, as
well as any discriminable features and connections. In Fig. 9, we see
in earlier layers (mixed4c) that both black bear and brown bear share

Is a horsecart more mechanical or animal?

la
ye

rs
ex

am
pl
e
fe
at
ur
e
vi
su

al
iza

tio
ns

mixed4d,
unit 484

5b5a4e4d4c4b4a3b3a

mixed4c,
unit 300

mixed5a,
unit 583

mixed4e,
unit 597

wheelpeople horse hip horse gear

Fig. 8. Using SUMMIT we can find classes with mixed semantics that shift
their primary associations throughout the network layers. For example,
early in the network, horsecart is most similar to mechanical classes
(e.g., harvester, thresher, snowplow), towards the middle it shifts to be
nearer to animal classes (e.g., bison, wild boar, ox), but ultimately returns
to have a stronger mechanical association at the network output.

many features, but as we move towards the output, we see multiple
diverging paths and channels that distinguish features for each class.
Ultimately, we see individual black and brown fur and bear face detec-
tors, while some channels represent general bear-ness. Therefore, it
appears INCEPTIONV1 classifies black bear and brown bear based on
color, which may be the primary feature humans may classify by. This
is only one example, and it is likely that these discriminable features
do not always align with what we would expect; however, attribution
graphs give us a mechanism to test hypotheses like these.

8.4 Finding Non-semantic Channels
Using SUMMIT, we quickly found several channels that detected non-
semantic, irrelevant features, regardless of input image or class (verified
manually with 100+ classes, computationally with all). For example,
in layer mixed3a, channel 67 activates to the image frame, as seen in
Fig. 10. We found 5 total non-semantic channels, including mixed3a
67, mixed3a 190, mixed3b 390, mixed3b 399, and mixed3b 412. Upon
finding these, we reran our algorithm for aggregating activations and
influences, and generated all attribution graphs with these channels
excluded from the computation, since they consistently produced high
activation values but were incorrectly indicating important features in
many classes. Although SUMMIT leverages recent feature visualization
research [40] to visualize channels, it does not provide an automated
way to measure the semantic quality of channels. We point readers to
the appendix of [40] to explore this important future research direction.

8.5 Informing Future Algorithm Design
We noticed that some classes (e.g., zebra, green mamba) have only a
few important channels in the middle layers of the network, indicating
that these channels could have enough information to act as a predictor
for the given class. This observation implies that it may be prudent
to make classification decisions at different points in the network, as
opposed to after a single softmax layer at the output. More specifically,
per the Al matrices, we can easily find these channels (in all layers)
that maximally activates for each class. We could then perform a
MaxPooling operation at each of these channels, followed by a Dense
layer classifier to form a new “model” that only uses the most relevant
features for each class to make a decision.

The inspiration for this proposed algorithm is a direct result of the
observations made possible by SUMMIT. Furthermore, our proposed
methodology makes it easy to test whether the motivating observation
holds true for other networks besides INCEPTIONV1. It could be the
case that single important channels for certain classes are a result of
the training with multiple softmax ‘heads’ used by INCEPTIONV1;
however, without SUMMIT, checking this would be difficult.

4c 4d 4e 5a
black fur

bear

The intersection of
brown bear and black bear.
Both classes share some bear-ness.

black bear face

black brown fur

brown fur

brown bear face
541

759

585

460

48

796

709

33814188219

216

415

446

431

Fig. 9. With attribution graphs, we can compare classes throughout layers of a network. Here we compare two similar classes: black bear and
brown bear. From the intersection of their attribution graphs, we see both classes share features related to bear-ness, but diverge towards the end
of the network using fur color and face color as discriminable features. This feature discrimination aligns with how humans might classify bears.

mixed3a
67

stronger
activation

Fig. 10. Using SUMMIT on INCEPTIONV1 we found non-semantic chan-
nels that detect irrelevant features, regardless of the input image, e.g., in
layer mixed3a, channel 67 is activated by the frame of an image.

9 DISCUSSION AND FUTURE WORK

Interactive visual comparison of attribution graphs. Currently,
SUMMIT interactively visualizes single attribution graphs. However,
there is great opportunity to support automatically, visual comparison
between multiple attribution graphs. Example comparison operations
include computing attribution graph difference, union, and intersection.

Mining attribution graphs for subgraph motifs. Since attribution
graphs are regular network graphs, we can leverage data mining and
graph analysis techniques to find the most common motifs, e.g., all
mammal classes may have three specific channels that form a triangle
that is always activated highly, or maybe all car classes share only single
path throughout the network. Extracting these smaller subgraph motifs
could give deep insight into how neural networks arrange hierarchical
concepts inside their internal structure.

Visualizing other neural network models. We justify our model
choice in Sect. 5, but an immediate avenue for future work explores
generating attribution graphs on other CNN models. Simpler models
like VGG [51] can be easily adapted with our approach, but more com-
plex networks like ResNets [20] will require a small modification for
computing attribution and influences (e.g., considering skip connec-
tions between layers as additional graph edges). Our approach also
may be adopted for exploring neural network components of model ar-
chitectures that provide activation information (e.g., the two individual
networks within a GAN [18], but not their interaction).

Better attribution graph generation. Computing neural network
attribution remains an active area of research: there is no consensus of
the best way to compute attribution [13, 28, 41, 49, 50, 55, 60]. To gener-
ate attribution graphs, we use activation aggregation as an initialization
for personalized PageRank on the entire network from aggregated in-
fluences. While this is one effective way to generate attribution graphs,
there could be other ways to generate graph explanations that describe

learned neural network representations. If so, this will only improve the
value of SUMMIT’s visualizations. For example, layer-wise relevance
propagation [3] could be used to seed our aggregation methods using
relevance scores instead of neuron activations. Conversely, exploring
attribution graphs using less-contributing channels could be a novel way
to discover non-relevant features. However, aggregation over spatial
positions and instances, a main contribution of SUMMIT, will still be
necessary given any other measure of neuron importance.

Hyperparameter selections. Our approach has a few hyperparam-
eters choices, including determining how many channels to record per
image when aggregating activations and computing attribution graph
influences, as well as what PageRank threshold to set for creating the
final visualizations. However, since our approach was designed to take
advantage of data at scale, in our tests we do not see many differences
in the limit that the number of images increases. Note that while our ap-
proach benefits from scale, both the aggregation and visualization work
on arbitrary dataset sizes, e.g., a single image, hundreds, or thousands.

Longitudinal evaluation of impacts in practice. We presented
Summit to ML researchers and scientists at industry and government
research labs, and discussed plans to conduct long-term studies to test
Summit on their own models. We plan to investigate how Summit
may inform algorithmic model design, prompt data collection for ill-
represented classes, and discover latent properties of deployed models.

10 CONCLUSION

As deep learning is increasingly used in decision-making tasks, it is
important to understand how neural networks learn their internal rep-
resentations of large datasets. In this work, we present SUMMIT, an
interactive system that scalably and systematically summarizes and
visualizes what features a deep learning model has learned and how
those features interact to make predictions. The SUMMIT visualiza-
tion runs in modern web browsers and is open-sourced. We believe
our summarization approach that builds entire class representations is
an important step for developing higher-level explanations for neural
networks. We hope our work will inspire deeper engagement from both
the information visualization and machine learning communities to
further develop human-centered tools for artificial intelligence [1, 39].

ACKNOWLEDGMENTS

We thank Nilaksh Das, the Georgia Tech Visualization Lab, and the
anonymous reviewers for their support and constructive feedback. This
work is supported by a NASA Space Technology Research Fellowship
and NSF grants IIS-1563816, CNS-1704701, and TWC-1526254.

REFERENCES

[1] A. Abdul, J. Vermeulen, D. Wang, B. Y. Lim, and M. Kankanhalli. Trends
and trajectories for explainable, accountable and intelligible systems: An
hci research agenda. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, p. 582. ACM, 2018.

[2] S. Amershi, M. Chickering, S. M. Drucker, B. Lee, P. Simard, and J. Suh.
Modeltracker: Redesigning performance analysis tools for machine learn-
ing. In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, pp. 337–346. ACM, 2015.

[3] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and
W. Samek. On pixel-wise explanations for non-linear classifier decisions
by layer-wise relevance propagation. PLOS ONE, 10(7):e0130140, 2015.

[4] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. Network dissection:
Quantifying interpretability of deep visual representations. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
6541–6549, 2017.

[5] A. Bilal, A. Jourabloo, M. Ye, X. Liu, and L. Ren. Do convolutional neural
networks learn class hierarchy? IEEE transactions on visualization and
computer graphics, 24(1):152–162, 2018.

[6] O. Biran and C. Cotton. Explanation and justification in machine learning:
A survey. In IJCAI Workshop on Explainable AI, 2017.

[7] S. Carter, Z. Armstrong, L. Schubert, I. Johnson, and C. Olah. Activation
atlas. Distill, 4(3):e15, 2019.

[8] T. Crnovrsanin, I. Liao, Y. Wu, and K.-L. Ma. Visual recommendations for
network navigation. In Computer Graphics Forum, vol. 30, pp. 1081–1090.
Wiley Online Library, 2011.

[9] N. Das, M. Shanbhogue, S.-T. Chen, F. Hohman, S. Li, L. Chen, M. E.
Kounavis, and D. H. Chau. Shield: Fast, practical defense and vaccination
for deep learning using jpeg compression. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 196–204. ACM, 2018.

[10] F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable
machine learning. arXiv preprint arXiv:1702.08608, 2017.

[11] D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visualizing higher-layer
features of a deep network. University of Montreal, 1341:3, 2009.

[12] R. Fong and A. Vedaldi. Net2vec: Quantifying and explaining how
concepts are encoded by filters in deep neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
8730–8738, 2018.

[13] R. C. Fong and A. Vedaldi. Interpretable explanations of black boxes
by meaningful perturbation. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 3429–3437, 2017.

[14] G. W. Furnas. Generalized fisheye views, vol. 17. Bell Communications
Research. Morris Research and Engineering Center , 1986.

[15] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using
convolutional neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2414–2423, 2016.

[16] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal.
Explaining explanations: An approach to evaluating interpretability of
machine learning. arXiv preprint arXiv:1806.00069, 2018.

[17] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. 2016.
[18] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pp. 2672–2680, 2014.

[19] A. W. Harley. An interactive node-link visualization of convolutional
neural networks. In ISVC, pp. 867–877, 2015.

[20] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 770–778, 2016.

[21] F. Hohman, A. Head, R. Caruana, R. DeLine, and S. M. Drucker. Gamut:
A design probe to understand how data scientists understand machine
learning models. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2019.

[22] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau. Visual analytics in deep
learning: An interrogative survey for the next frontiers. IEEE Transactions
on Visualization and Computer Graphics, 25(8):2674–2693, Aug 2019.
doi: 10.1109/TVCG.2018.2843369

[23] N. Jean, M. Burke, M. Xie, W. M. Davis, D. B. Lobell, and S. Ermon.
Combining satellite imagery and machine learning to predict poverty.
Science, 353(6301):790–794, 2016.

[24] M. Kahng, P. Y. Andrews, A. Kalro, and D. H. P. Chau. Activis: Visual
exploration of industry-scale deep neural network models. IEEE Transac-

tions on Visualization and Computer Graphics, 24(1):88–97, 2018.
[25] M. Kahng, N. Thorat, D. H. P. Chau, F. B. Viégas, and M. Wattenberg.

Gan lab: Understanding complex deep generative models using interactive
visual experimentation. IEEE Transactions on Visualization and Computer
Graphics, 25(1):310–320, 2019.

[26] S. Kairam, N. H. Riche, S. Drucker, R. Fernandez, and J. Heer. Refinery:
Visual exploration of large, heterogeneous networks through associative
browsing. In Computer Graphics Forum, vol. 34, pp. 301–310. Wiley
Online Library, 2015.

[27] B. Kim, W. M., J. Gilmer, C. C., W. J., , F. Viegas, and R. Sayres. Inter-
pretability Beyond Feature Attribution: Quantitative Testing with Concept
Activation Vectors (TCAV). ICML, 2018.

[28] P.-J. Kindermans, K. T. Schütt, M. Alber, K.-R. Müller, D. Erhan, B. Kim,
and S. Dähne. Learning how to explain neural networks: Patternnet and
patternattribution. arXiv preprint arXiv:1705.05598, 2017.

[29] A. N. Langville and C. D. Meyer. A survey of eigenvector methods for
web information retrieval. SIAM Review, 47(1):135–161, 2005.

[30] Z. C. Lipton. The mythos of model interpretability. ICML Workshop on
Human Interpretability in Machine Learning, 2016.

[31] M. Liu, S. Liu, H. Su, K. Cao, and J. Zhu. Analyzing the noise robustness
of deep neural networks. IEEE Conference on Visual Analytics Science
and Technology, 2018.

[32] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu. Towards better analysis of
deep convolutional neural networks. IEEE Transactions on Visualization
and Computer Graphics, 23(1):91–100, 2017.

[33] Y. Liu, T. Kohlberger, M. Norouzi, G. Dahl, J. Smith, A. Mohtashamian,
N. Olson, L. Peng, J. Hipp, and M. Stumpe. Artificial intelligence-based
breast cancer nodal metastasis detection. Archives of Pathology & Labora-
tory Medicine, 143(7):859–868, 2019.

[34] Y. Lu, R. Garcia, B. Hansen, M. Gleicher, and R. Maciejewski. The state-
of-the-art in predictive visual analytics. In Computer Graphics Forum,
vol. 36, pp. 539–562. Wiley Online Library, 2017.

[35] L. McInnes, J. Healy, and J. Melville. UMAP: Uniform Manifold Ap-
proximation and Projection for Dimension Reduction. ArXiv e-prints, Feb.
2018.

[36] G. Montavon, W. Samek, and K.-R. Müller. Methods for interpreting and
understanding deep neural nnetworks. Digital Signal Processing, 2017.

[37] A. Mordvintsev, C. Olah, and M. Tyka. Inceptionism: Going deeper into
neural networks. Google Research Blog, 2015.

[38] A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and J. Yosinski. Plug &
play generative networks: Conditional iterative generation of images in
latent space. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4467–4477, 2017.

[39] C. Olah and S. Carter. Research debt. Distill, 2017.
https://distill.pub/2017/research-debt. doi: 10.23915/distill.00005

[40] C. Olah, A. Mordvintsev, and L. Schubert. Feature visualization. Distill,
2(11):e7, 2017.

[41] C. Olah, A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye, and
A. Mordvintsev. The building blocks of interpretability. Distill, 3(3):e10,
2018.

[42] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford InfoLab,
1999.

[43] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions
on Knowledge and Data Engineering, 22(10):1345–1359, 2010.

[44] Parliament and C. of the European Union. General data protection regula-
tion. 2016.

[45] D. Ren, S. Amershi, B. Lee, J. Suh, and J. D. Williams. Squares: Sup-
porting interactive performance analysis for multiclass classifiers. IEEE
Transactions on Visualization and Computer Graphics, 23(1):61–70, 2017.

[46] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust you?:
Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1135–1144. ACM, 2016.

[47] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale vi-
sual recognition challenge. International Journal of Computer Vision,
115(3):211–252, 2015.

[48] R. R. Selvaraju, P. Chattopadhyay, M. Elhoseiny, T. Sharma, D. Batra,
D. Parikh, and S. Lee. Choose your neuron: Incorporating domain knowl-
edge through neuron-importance. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pp. 526–541, 2018.

[49] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and

D. Batra. Grad-cam: Visual explanations from deep networks via gradient-
based localization. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 618–626, 2017.

[50] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps.
ICLR, 2014.

[51] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[52] D. Smilkov, S. Carter, D. Sculley, F. B. Viégas, and M. Wattenberg. Direct-
manipulation visualization of deep networks. ICML Workshop on Visual-
ization for Deep Learning, 2016.

[53] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg. Smoothgrad:
Removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

[54] D. F. Steiner, R. MacDonald, Y. Liu, P. Truszkowski, J. D. Hipp, C. Gam-
mage, F. Thng, L. Peng, and M. C. Stumpe. Impact of deep learning
assistance on the histopathologic review of lymph nodes for metastatic
breast cancer. The American Journal of Surgical Pathology, 42(12):1636–
1646, 2018.

[55] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep
networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 3319–3328. JMLR. org, 2017.

[56] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–9, 2015.

[57] F. Van Ham and A. Perer. search, show context, expand on demand: sup-
porting large graph exploration with degree-of-interest. IEEE Transactions
on Visualization and Computer Graphics, 15(6):953–960, 2009.

[58] K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. Mane, D. Fritz,
D. Krishnan, F. B. Viégas, and M. Wattenberg. Visualizing dataflow graphs
of deep learning models in tensorflow. IEEE transactions on visualization
and computer graphics, 24(1):1–12, 2017.

[59] A. R. Zamir, A. Sax, W. Shen, L. J. Guibas, J. Malik, and S. Savarese.
Taskonomy: Disentangling task transfer learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 3712–
3722, 2018.

[60] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional
networks. In European Conference on Computer Vision, pp. 818–833.
Springer, 2014.

	Introduction
	Background for Neural Network Interpretability
	Understanding Neuron Activations
	Towards Higher-level Deep Learning Interpretation
	Visual Analytics for Interpretability

	Design Challenges
	Design Goals
	Model Choice and Background
	Creating Attribution Graphs by Aggregation
	Aggregating Neural Network Activations
	Aggregating Inter-layer Influences
	Combining Aggregated Activations and Influences to Generate Attribution Graphs

	The Summit User Interface
	Embedding View: Learned Class Overview
	Class Sidebar: Searching and Sorting Classes
	Attribution Graph View: Visual Class Summarization
	System Design

	Neural Network Exploration Scenarios
	Unexpected Semantics Within a Class
	Mixed Class Association Throughout Layers
	Discriminable Features in Similar Classes
	Finding Non-semantic Channels
	Informing Future Algorithm Design

	Discussion and Future Work
	Conclusion

