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4. Don discovers a
connected component in
layer 5 describing
surprise, where neutral
words like "surprising"
bridge groups of positive
and negative words.
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1. Don explores a word embedding graph
using the 3D edge decomposition overview.
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Figure 1: Atlas adapts scalable edge decomposition to provide novel modes of large graph exploration, through three coordi-

nated views. A. Our user Don first explores the edge decomposition of a word embedding graph in the Overview by decomposing a graph
into 3D graph layers. B. Don then inspects the Ribbon for a summary of the layers. C. From the word “dismayed,” in layer 8, Don performs
cross-layer exploration, to reach layer 5. Using the Layers view’s interactive node-link diagrams, Don discovers a component in the word
embedding describing one’s surprise, where neutral words (e.g., “surpised” and “surprising”) bridge multiple quasi-cliques that describe more
positive (e.g., “remarkable” and “astounding”) and negative (e.g., “irked” and “incensed”) surprise words. Blue perspective planes, and red and
green ellipses are illustrative annotations.

ABSTRACT

Graphs are everywhere, growing increasingly complex, and still
lack scalable, interactive tools to support sensemaking. To address
this problem, we present Atlas, an interactive graph exploration
system that adapts scalable edge decomposition to enable a new

∗Authors contributed equally.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6272-6/19/03. . . $15.00
https://doi.org/10.1145/3301275.3302275

paradigm for large graph exploration, generating explorable multi-
layered representations. Atlas simultaneously reveals peculiar
subgraph structures, (e.g., quasi-cliques) and possible vertex roles
in connecting such subgraph patterns. Atlas decomposes million-
edge graphs in seconds, scaling to graphs with up to 117 million
edges. We present the results from a think-aloud user study with
three graph experts and highlight discoveries made possible by
Atlas when applied to graphs from multiple domains, including
suspicious yelp reviews, insider trading, and word embeddings.
Atlas runs in-browser and is open-sourced.
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1 INTRODUCTION

Graphs are everywhere, growing increasingly complex, and still
lack scalable, interactive tools to support sensemaking. In a recent
online survey, graph analysts rated scalability and visualization as
the most pressing issues to address [57]. Graph drawing approaches
such as “super-noding” [4, 10, 11], and edge bundling [5, 24, 36]
have been designed to help visually reduce the number of glyphs
visible to a user. Some work abstracts graphs to higher-level rep-
resentations, such as using contours and heat maps as a proxy for
vertex density [22, 44], graph motifs for repeating structural pat-
terns [27], and overall graph summarizations [42, 68]. New modes
of exploration based on relevance and measures of “interestingness”
have also been developed to explore large graphs without showing
every vertex and edge [23, 33, 55]. While these approaches may help
users develop insights into a graph’s functional properties, scala-
bility, interaction, and extracting overall descriptive information
about an unknown graph as it is being explored remain pressing
issues in large graph exploration systems.

Edge decomposition algorithms, based on fixed-points of degree
peeling, have strong potential in helping users explore unfamiliar
graph data [1, 3], because (1) they can discover peculiar subgraph
patterns structurally similar or dissimilar to regular subgraphs; (2)
they can quantify possible “roles” a vertex can play in the overall
network topology; and (3) they scale to large graphs.

In this work, we present Atlas (Figure 1), an interactive graph
exploration system that adapts scalable edge decomposition [3]
to enable a new paradigm for large graph exploration, generat-
ing explorable multi-layered representations. Through Atlas, we
contribute:
• Newparadigm for graph exploration.Our novel approach in-
troduces two new actionable concepts, graph layers and vertex
clones, that help analysts discover interesting and unusual graph
substructures. It decomposes a large graph into an ordered set of
graph layers (see Figure 1A), such that each edge participates
in a unique layer. Vertices, however, can exist in multiple layers;
we call these vertex clones. Graph layers help users identify
potentially interesting and unusual substructures, by extricating
such patterns from the whole graph. In the graph layer set, layers
with denser structures rise to the top (e.g., quasi-cliques, multi-
partite-cores), while those with sparser structures (e.g., trees,
stars) sink to the bottom. Vertex clones allow one to perform
cross-layer exploration, investigating a graph across layers, to
examine local structures with a global context.

• Fast, scalable edge decomposition via memory mapping

andmulticore parallelization.Atlas decomposesmillion-edge
graphs in seconds, scaling to graphs with up to 117 million edges

from many domains (e.g., social networks, hyperlink networks,
and co-occurrence networks). To the best of our knowledge, this
is the first published timing results of this edge decomposition
algorithm. Our algorithm is open-sourced.1

• Atlas: a web-based interactive graph exploration system.

Atlas is open-sourced.1 It offers three coordinated views for
exploring large graphs. It accelerates graph rendering and layout
using GPUs (e.g., via 3D graphics library three.js), supporting
real-time visualization of graph layer overview and interactive
cross-layer exploration of local subgraph structures.

• User Study. Through a think-aloud user study with three graph
experts, we highlight discoveries made possible by Atlas, such
as spotting suspicious connections among yelp reviewers and
insider traders.

2 ILLUSTRATIVE SCENARIO

To illustrate how Atlas can help users explore large graphs and
discover interesting structure, consider a user Don who wants to
make sense of a word embedding graph generated from Wikipedia
from 2014. Creating word embeddings is a popular and powerful
technique to turn words into high dimensional vectors [18, 48, 51],
which are then fed as input to machine learning algorithms to solve
a variety of problems, e.g., visual question answering [9], neural
machine translation [13]. Therefore it is important to make sense
of what information a word embedding has captured and how well
the embedding matches our understanding of language.

Don’s Wikipedia word embedding graph is generated using
GloVe: an unsupervised learning algorithm for obtaining vector
representations for words [51]. The graph contains 65,870 vertices
and 213,526 edges. Each vertex is a unique word, and an edge con-
nects two words if the angular distance between their two word
vectors is less than some threshold.2

Visualizing edge decompositions. Exploring the word embedding
for the first time, Don wants to first see an overview of the graph.
Atlas decomposes the word embedding graph into graph layers,
and visualizes them as a 3D structure in the Overview (Figure 1A),
one of three main views in Atlas. Layers with denser structures
rise to the top of the 3D structure (e.g., quasi-cliques), while those
with sparser structures (e.g., trees, stars) sink to lower layers.

Finding interesting graph layers. Atlas’s Ribbon (see Figure 1B)
provides Don with a compact visual summary of the edge decompo-
sition using well-studied graph measures (e.g., #vertices, clustering
coeff.). Each graph layer is encoded by a glyph. Seeing that a layer’s
clustering coefficient is encoded by color brightness (a darker bar
represents a denser layer), layer 8 caught Don’s attention, because
it is very dense (i.e., very dark bar), yet it is further down in the
Ribbon than other dense layers. Don clicks layer 8 in the Ribbon to
display it in the Layers view. The layer contains many small con-
nected components (Figure 2, left), whose node positions have been

1 Visualization: https://github.com/fredhohman/atlas.
Algorithm: https://github.com/fredhohman/atlas-algorithm.
2Angular distance is closely related to cosine similarity, and is an effective method
for measuring the linguistic or semantic similarity of corresponding words [51]. The
threshold to connect two words is set to 0.9. Words with numbers/digits are removed
from the dataset.

https://doi.org/10.1145/3301275.3302275
https://doi.org/10.1145/3301275.3302275
https://github.com/fredhohman/atlas
https://github.com/fredhohman/atlas-algorithm
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Figure 2: Layer 8 from the word embedding graph. On the
left is the original layout computed with respect to the entire graph,
but now that we have separated out layer 8 from the remaining
graph, we can recompute its layout independently. This produces
the layout on the right, where the cloned vertices are colored red
and sized according to howmany clones they have in the remainder
of the graph.

computed with respect to the entire graph. Since we are now visu-
alizing only a single layer, Atlas performs a force-directed layout
for these components, with respect to this layer only, revealing that
layer 8 is in fact a collection of highly dense quasi-cliques (Figure 2,
right). This view is fully interactive: Don can zoom and pan over
the graph layer, brush a vertex to see its label, and highlight its
immediate neighbors.

Cross-layer exploration. While exploring layer 8, Don discov-
ers many interesting quasi-cliques of related words, such as one
describing familial relationships (with words like “daughter,” “hus-
band,” and “grandparent”) and another that describes the levels of
negative emotion one can experience (including words like “an-
noyed,” “dismayed,” and “mortified”). As a word can have multiple
meanings, Don wonders if the word “dismayed” also participates
in other layers. Atlas supports interactive cross-layer exploration.
Don clicks on the “Clone” toggle, which colors and sizes vertices
that are cloned in other layers red (Figure 2, right), revealing that
many vertices in the quasi-clique also exist in other layers. Don in-
spects the vertex “dismayed,” and notices that it has vertex clones
in layers 5 and 3 (Figure 1C, top right). Clicking layer 5 brings Don
to that layer for further exploration.

Local exploration with a global context. Unlike in layer 8, “dis-
mayed” in layer 5 is connected to a larger component (Figure 1C),
and as Don explores the neighborhood of “dismayed,” he notices
the words transition to more neutral words like “surprised” and
“surprising,” then to positive words like “remarkable,” “astounding,”
and “extraordinarily.” Using Atlas, Don has now discovered that
words describing surprise are represented in this word embedding
similar to how humans would think of them: one can be surprised
in both positive or negative ways, thus “bridging” quasi-cliques
of positive and negative surprise words (Figure 1C). To help Don
keep track of and summarize his exploration, Atlas automatically
computes the shortest paths that connect vertices (words) that he

has inspected and highlight the paths in blue. We call this interac-
tive visual summary the shortest-path-net, which allows a user to
explore semantic information and information transition within a
connected component of a graph layer.

Multiple exploration choices. Don now has multiple choices for
continuing exploring this word embedding graph using Atlas:
(1) visit the other connected components in layer 5, (2) backtrack
to layer 8 and use the last clone of “dismayed” as a mechanism
to perform further cross-layer exploration, or (3) return to the
beginning and inspect the Overview and Ribbon for a completely
different layer to explore. Regardless of what Don chooses, he can
gain a better understanding of the word embedding graph both
globally, by visualizing graph layer structure, and locally, by using
vertex clones and shortest-path-net representations.

3 RELATEDWORKS

Visualizing graphs is an active area of research that has motivated
the development of many tools and techniques, of which many are
surveyed in [35] and more recently [62]. Interacting with graphs for
sensemaking is also a popular and successful avenue for research
that is surveyed in [52]. In a recent online survey that was con-
ducted to gather information about how graphs are used in practice,
researchers uncovered that scalability and visualization are unde-
niably the most pressing issues faced by graph data analysts [57].
Lastly, a survey from some graph visualization pioneers outlines
future research directions for graph drawing, visualizing, mining,
and analytics, noting that while graph visualization has its own
research trajectory, oftentimes it has significant overlap with the
broader field of visual analytics [63].

Analytics to support sensemaking. Typical approaches to visual-
ize graphs include force directed layouts, vertex clusterings, and
topological contractions to reduce visual complexity. Advanced
analytic techniques like identifying vertex roles and diversity [34],
graph motifs [27], and graph summarizations [43, 64, 68] can show
deep insight into a network’s functional properties, yet scalability
and interaction are two pressing issues of central importance in
large graph exploration systems. Some work aims to summarize
graphs by hiding redundant vertices and edges commonly used in
node-link diagrams by using contour maps and heat maps to show
the density of vertices in a particular region of the graph [7, 22, 44].
Extracting overall descriptive information about an unknown graph
data set as it is being explored is a desirable feature that can amplify
users ability to discover “out of the box” data features [61]. There
has also been work done on relevance based exploration approaches
where a system can recommend particular vertices to explore within
large graphs [23, 33, 55]. Lastly, while in this work we present the
benefits of using edge decomposition as a means for interactive
graph exploration, previous work for vertex decompositions, such
as k-core decomposition, has been explored [8, 17, 68].

Visualizing large graphs. Visualizing large graphs has seen re-
search attention for years [2, 12], with more recent work bringing
fluid interactions into interfaces for the web [30]. There are now
an abundance of open-source graph visualization libraries, some
of which [15, 28] have been highly successful in practice; however,
most toolkits and libraries do not scale as graphs grow larger. Some
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work has tackled this scalability problem head on by utilizing pow-
erful graphics processing units (GPUs) to rendering millions of
vertices and edges on screen at once [40, 47, 50]. While this work
pushes the boundary of visual scalabiltiy, showing an entire graph,
of even modest size, often limits the amount of interaction possible;
recent work has furthered underscored the importance of develop-
ing interactive visual analytics systems that can handle “extreme”
scale data [67] and graphs.

Visual scalability. As an alternative to visualizing an entire graph,
visual reduction techniques like multi-layered and hierarchical visu-
alizations of graphs have also been addressed [4, 11]. Here, similar
or nearby vertices are grouped together into a “super-node,” also
called “meta-nodes” [10]. Some work has developed interactive sys-
tems to zoom into super-nodes on demand [4, 45, 65] and navigate
graphs bottom-up [25] to reduce the amount of vertices shown at
one time, while other work has explored the feasibility of using
hyperbolic geometry for graph exploration [49]. Similar techniques
have been developed to address the visual scalability of edges in
graphs. Often referred to as edge bundling, this technique aims to
group similar edges together into larger paths to highlight major
connections across a graph. Edge bundling has seen great interest
both historically [24, 36, 37] and recently [5, 29, 31, 58]. Earlier re-
search has studied visualizing graphs in 2.5D, 3D, and stereoscopic
space and incorporated some of the above techniques [6, 17, 20].
However, Atlas introduces a new paradigm for large graph ex-
ploration and new actionable concepts (e.g., graph layers, vertex
clones) that existing work has not investigated.

Interactive graph querying. Another alternative to visualizing
an entire graph is interactive graph querying, where the general
approach is to query large graphs for meaningful, user-defined
subgraphs in order to glean insight about a larger graph’s struc-
ture [54, 56]. However, some graph queries may return hundreds
of results; therefore, some recent work has addressed summarizing
graph query results [53] using dimensionality reduction to pro-
duce graph embeddings that can be visualized as interactive 2D
scatterplots [53, 64]. Querying allows one to beginning to explore
modern day massive graphs, with the potential for billions and even
trillions of edges [66]; however, returned queries often lose their
global context with respect to the original graph.

4 ATLAS: INTERACTIVE LARGE GRAPH

EXPLORATION

Here we describe design challenges and our solutions that guided
the design decisions for Atlas. The following three subsections
each describe one of the main coordinated views of Atlas and
highlight their core features for graph exploration; these include
the 3D Overview, the Graph Ribbon, and the Layers view.

4.1 Challenges and Design Rationale

Challenge 1: Variety of overlapping subgraph structure. There are
a variety of existing techniques that aim to discover structure and
patterns in graphs (as discussed in Related Works). However, while
these techniques may find individual structure and patterns, they
do not link the findings together, nor do they explain how multiple
patterns are associated with one another. Revealing such kinds of

links between structure and pattern is a hallmark capability that is
crucial to sensemaking [32, 38]. Our solution: We utilize the dual
nature of graph layers: (1) layers can be explored independently
from one another, but more importantly, (2) layers can be linked
together using vertex clones as a mechanism of traversal from
layer to layer. We call this cross-layer exploration (see Figure 3).
Visualizing the decomposition in 3D may help users more clearly
see the overlapping graph structure, which could help them choose
which layer of the graph to explore first.

Challenge 2: Local exploration of large graphs. Since large graph
exploration is difficult from both a visual and computational scala-
bility perspective, querying a graph or considering subgraphs to
explore locally can be helpful. However, often the global context
is lost using these approaches, as users do not know where in the
graph they are exploring, or how different subgraphs are related to
one another. Our solution: We design a novel visual summarization
of the edge decomposition called the Graph Ribbon and embed it in
the middle of the user interface (Figure 3). The Ribbon encodes each
layer as a glyph and functions as a global map of the decomposition
and graph. A small triangle pointing left or right (denoting if the
layer is visualized in the 3D Overview or the Layers view) is dis-
played next to visualized layers’ glyphs. We also design novel local
exploration techniques within a graph layer (e.g., shortest-path-net
via sequential egonet expansion) that help users explore graphs
locally with a global context.

Challenge 3: Handling large graphs. While many graphs are small
and can be visualized in 2D with standard layouts, many modern
graphs are large and complex. Not only is this problematic for data
visualization itself, but also troublesome for engineering interactive
tools. The sheer size of the data render many existing visualization
tools unusable as they are often designed to visualize the entire
graph. Our solution: We display a visual summarization of the edge
decomposition (called the Ribbon) for a high-level view of the graph
and its decomposition. Then, we can selectively load and visualize
only the layers we desire, skirting scalability challenges that come
with visualizing an entire graph at once. We further support Atlas
by open-sourcing all of its code, from the decomposition algorithm
to the interactive visualization system, ensuring that it is cross-
platform and accessible without specialized hardware.

4.2 3D Graph Decomposition Overview

The left view of Atlas, called the Overview (Figure 3), visual-
izes graph decompositions in 3D and allows users to zoom, pan,
and rotate the 3D structure in-browser and in real-time. Since the
graph edge set is uniquely partitioned into graph layers, a natural
approach to visualize the decomposition is to first perform a tra-
ditional 2D layout of the graph in the plane (this assigns vertices
x and y coordinates); however, we now assign a z coordinate to
each vertex that is a function of the vertex peel value, i.e., the graph
layer number. Since graph layers are numerically ordered, when
visualizing a decomposition in 3D the highest, most dense layers
(e.g., quasi-cliques) rise to the top while the lower layers sink to the
bottom (e.g., trees, stars). Computing the initial 2D layout of large
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Figure 3: Atlas user interface. Atlas is composed of three main views: the 3D Overview (left), the Ribbon (middle), and the Layers view
(right). The Ribbon splits the interface and can be dragged left or right to adjust the visible screen real estate that either the Overview or
Layers view shows. Here, the vertex “caeciliidae” is selected, colored blue in both the Overview and Layers view. We see “caeciliidae” (a
worm-like amphibian) in layer 30 bridges two quasi-cliques (families of birds and families of sea snails) together, while its clone in layer 25
participates in another single quasi-clique (families of land creatures).

graphs is non-trivial; therefore, we use a GPU-accelerated imple-
mentation [21] of the Barnes-Hutt approximation [14] to compute
large graph layouts in minutes.

Users can display all graph layers at once or selectively add
layers to the Overview. The Overview also contains options to
help users explore and manipulate the 3D structure, including:
sliders for adjusting the size of the vertices, the height of the layers
(e.g., dragging this slider animates splitting the graph into its graph
layers), and the spread of the layers (i.e., scaling thex andy positions
of the nodes). Since navigating large 3D structures suffers from
a distorted perspective, clicking the “Top View” button returns
the camera to its original position. This 3D Overview naturally
visualizes how graphs decompose into layers and highlights how
vertices can be cloned throughout multiple layers; if a vertex has
clones, they will be stacked vertically along the z-axis (see the two
blue vertex clones for “caeciliidae” in Figure 3, left).

4.3 Graph Ribbon: Edge Decomposition

Summarization

For each layer produced by the edge decomposition, we compute
a set of measures that together provide a quantitative summary
of the edge decomposition. We encode these measures for every
layer as a horizontal bar glyph to create the visualization in the
middle view of the Atlas user interface, called the Ribbon (Fig-
ure 3). While there are many graph measures originating from
graph theory, graph mining, and network science, we selected five
measures to summarize the graph layers that could guide users
in exploring and prioritizing their investigation: #edge, #vertex,
#clone, #connected components, and clustering coefficient. For ex-
ample, with our graph decomposition (discussed in next section),
layers with denser substructures rise to the top (e.g., quasi-cliques,
multi-partite-cores) — this observation motivates our decision to
include these five measures because denser layers have a higher
clustering coefficient value, a higher vertex-to-edge ratio, and sig-
nificantly fewer connected components than lower layers (since
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Figure 4: The Ribbon for the Wikipedia GloVe word embed-

ding graph. The graph Ribbon summarizes the edge decompo-
sition using graph measures such as the vertex count, the edge
count, the cloned vertex count, clustering coefficient, and number
of connected components for each graph layer.

such dense substructures are likely rare and isolated). The clone-
to-vertex ratio could indicate how a substructure is connected to
other nodes in the graph.

While inspecting graph measures on each layer independently
can be enlightening, visualizing each metric across layers as a distri-
bution highlights the power of the edge decomposition. Hovering
over a layer displays a tooltip with the five computed measures
displayed as numerical values for a given layer. The top of Ribbon
includes a menu button that contains options to toggle each of the
visualized measures, as well as a linear / log scale toggle for the axis.
Clicking on a layer’s glyph displays that layer in the Layers view,
while a Command+Click displays that layer in 3D in the Overview.
Lastly, the entire Ribbon can be dragged using either of the arrows
at the top to give more screen real estate to either the Overview or
Layers view. Listed below are the five measures and how they are
visualized in Atlas.
• Edges: The number of edges within each layer. Our edge decom-
position partitions the edges into unique layers, therefore the
sum of all edges across all graph layers equals the total number
of edges in the original graph. This measure is encoded as the
large bars in Figure 4.

• Vertices: The number of vertices within each layer. Recall this
decomposition produces vertex clones, i.e., vertices that have
multiple existences across layers; therefore, the sum of all vertices
across all graph layers will be at least the total vertices in the
original. Note that within a single layer the number of vertices is

bounded above by the number of edges in that layer (except for
layer 1, in which a single edge can be a connected component;
in this case a component contributes 1 edge and 2 vertices). This
measure is encoded as the thinner bars in Figure 4.

• Vertex clones: The number of vertex clones within each layer.
For a vertex to qualify as a clone, it must have one other existence
in another layer; therefore, the sum of all clones across all graph
layers will be at most the number of vertices in the original
graph. Note that within a single layer the number of clones is
bounded above by the number of vertices in that layer; this bound
is achieved when every vertex of a layer is a clone. This measure
is encoded as the thin vertical tick in Figure 4.

• Connected components: The number of connected compo-
nents within each layer. This identifies the number of disjoint
graphs within a single graph layer. Note that the number of
connected components within a layer is bounded above by the
number of vertices in a layer; however, due to the extra constraint
generated by fixed-points of degree peeling (i.e., for a vertex v
to belong in layer l it must have at least degree l), the number
of components in practice is much smaller than the number of
vertices. This measure is represented numerically on the right
hand side of each layer glyph in Figure 4.

• Clustering coefficient: The global clustering coefficient of each
layer. This gives a measure of the density of the produced layer.
This metric ranges between 0 and 1, where smaller values rep-
resent sparsely connected graphs (e.g. trees) and higher values
represent denser graphs (e.g. cliques). This measure is encoded
as the color of the larger bars in Figure 4, where denser graphs
are darker and sparser graphs are lighter.

4.4 Exploration with Graph Layers and Vertex

Clones

The last main view of Atlas is the Layers view (Figure 3, right).
When a layer in the Ribbon is clicked, Atlas visualizes that layer as
an interactive node-link diagram. This visualization is completely
interactive: users can zoom and pan on the graph, as well as drag,
pin, and select specific vertices. Hovering over a vertex highlights it,
its edges, and its neighbors orange (Figure 3, right). The computed
layer measures are listed in the top left corner of the Layers view.
If the specified layer only contains a single connected component,
a message is shown displaying how many edges the component
requires to become a complete clique. Conversely, if the specified
layer contains multiple connected components, a different message
is shown displaying the largest connected component’s vertex and
edge count. A slider is also available that hides components in
decreasing order of their size, i.e., dragging the slider from left to
right hides the smallest connected components, eventually showing
only the largest component in the layer.

Independent graph layer layouts. Atlas supports multiple inter-
actions for exploring within a single layer. Users can hide and show
the vertices or edges of a layer. The “Redraw” toggle animates the
layer unraveling using a precomputed independent force-directed
layout to better show the decomposition’s found structure (Figure 2).
However, users can also run a force-directed layout in-browser by
clicking the “Live Layout” toggle; the layout computation continues
until the toggle is turned off. This can be useful for computing a
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larger connected component’s layout within a layer; by using the
component slider to hide smaller components the desired larger
component can be redrawn independently for better structural
clarity.

Graph layer contour motifs. The “Motif” toggle computes a con-
tour map of a graph layer by performing kernel-density estima-
tion (KDE) on the layer’s vertices. KDE parameter controls are
present underneath the toggle. Contour motifs provide a higher-
level representation of a graph layer, creating a proxy for vertex
density [7, 22, 44]. The contour motif is also instantly recomputed
whenever a user drags a vertex or uses one of the above interactions
to re-redraw a layer.

Shortest-path-nets via sequential egonet expansion. The “Path”
button allows users to explore a single graph layer by building a
shortest-path-net representation. When two vertices are selected
within a graph layer, clicking the “Path” button will compute the
shortest path between the vertices, or an approximation depending
on the component size, highlight the computed path blue, and
display the vertex labels along this path (seen in Figure 1, right).
A user can now select a third vertex somewhere else in the layer
and click “Path” once again to find an approximate shortest path
from the third vertex to any other vertex along the existing path;
iterating this process computes what we call a shortest-path-net via
sequential egonet expansion. This mode of exploration is especially
useful for observing the transition of semantic information from
one side of a large connected component to another.

Vertex clones. Lastly, the “Clone” toggle shows which vertices
of a graph layer are clones or not. When toggled on, Atlas colors
cloned vertices red and sizes each vertex according to how many
clones that vertex has in the entire graph (see Figure 2). When
locally exploring a single graph layer, visualizing the vertex clones
provides global context for how a particular vertex may participate
in many graph layers at once. Conversely, vertices that do not have
any clones remain colored gray, and stand out as “secret agents”
within a particular layer. These vertices are equally informative, as
all of their edges exist within a single layer, indicating that they play
a singular, and potentially anomalous, role in the graph. Hovering
over a vertex displays its label and lists the other layers its clones
exist in. If a user clicks on one of the clones in the list, Atlas shows
the selected layer underneath the original visualized layer and
centers each of their displays on the selected vertex and its clone
(see Figure 3, right). These vertices are now selected and synced,
i.e., dragging one of the vertices will also drag the other, updating
their position in both layers, reinforcing the notion that a single
vertex can participate and influence multiple layers throughout an
entire graph. For example, in Figure 3 on the right, the blue vertex
“caeciliidae” (a worm-like amphibian) in layer 30 bridges two quasi-
cliques (families of birds and families of sea snails) together, while
its clone in layer 25 participates in another single quasi-clique
(families of land creatures). A selected node in the Layers view is
also highlighted in the Overview.

Algorithm Example
Fixed-points of degree peeling edge decomposition

Algorithm Example
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Figure 5: An exemplar graphdemonstrating the edge decom-

position’s procedure. The decomposition is top-down: it finds
the highest peel layer first and iterates downward. In the example
above, the result is an edge decomposition containing three layers
(shades of blue) and three vertex clones (circled in green).

5 FAST AND SCALABLE EDGE

DECOMPOSITION

5.1 Edge Decomposition Algorithm Summary

Below, we summarize the algorithm, with an accompanying exam-
ple seen in Figure 5. This algorithm iteratively removes vertices
of minimum degree from a graph G = (V ,E), which partitions the
vertices of any graph into a collection of subsets, each of which
is characterized by its iterative minimum degree in G, called the
peel value of the subset. We call the subgraph induced by the sub-
set of vertices with highest peel value the EdдeCore of G, i.e., the
highest edge layer ofG (Figure 5, “Iter. 1: Finding peel layer 3”, left).
If EdдeCore(G) is different from E(G), remove the EdдeCore from
E(G) and iterate (Figure 5, “Iter. 1: Finding peel layer 3”, right).

This iterative edge decomposition produces an ordered set of
graph layers where lower layers consist of sparse graph structures
depending on the overall minimum degree of the graph (e.g., layer
1 consists of “trees” and “stars”) and higher layers consist of higher-
order patterns, such as quasi-cliques, which are often candidates to
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Table 1: Results for our edge decomposition algorithm across of number of different graphs varying in size and domain.

Experimental timings are the average of 5 runs for each graph. We can decompose graphs with millions of edges in seconds, and graphs with
hundreds of millions of edges in minutes.

Graph Graph Type Vertices Edges Time (sec.) Layers Highest Peel

Bible Names co-occurrence 1,774 9,131 0.01 12 15
Google+ social network 23,628 39,242 0.02 10 13
arXiv astro-ph co-authorship 18,771 198,050 0.10 47 56
Amazon co-purchase 334,863 925,872 0.12 6 6
US Patents citation network 3,774,768 16,518,947 11.73 41 64
Pokec social network 1,632,803 30,622,564 12.33 44 70
LiveJournal social network 4,847,571 68,993,773 120.70 179 510
Wikipedia Links (German) hyperlink network 3,225,565 81,626,917 225.40 320 1656
Orkut social network 3,072,441 117,184,899 91.84 91 253

be explored to find traditional local graph “communities” based on
high density. This is seen in the bottom of Figure 5 in the Result
section where each edge is labeled with its peel value, and the three
produced graph layers are colored accordingly in blue. Each such
layer can be explored and analyzed, independent of other layers,
by using methods that exploit the fact that each vertex in a layer
has the same peel value, e.g., layer i contains vertices of peel value
i . Whereas each edge is assigned only one peel value, a vertex can
appear in multiple layers if it is an endpoint of multiple edges that
belong in different layers. We call vertices that appear in multiple
layers cloned vertices; in the example in Figure 5 in the bottom panel,
the three cloned vertices are circled in green. Therefore, not only
does this edge decomposition algorithm assign peel values to edges,
it also produces a vector profile for each vertex describing what
layers that vertex exists in, which helps reveal the various roles a
vertex can play in the overall graph.

5.2 Speed and Scalability Improvements

Our algorithm uses the ParK multicore [26] k-core decomposi-
tion [16] to find the highest peel layer iteratively. To enable our
algorithm to work with large graphs that may not fit in main mem-
ory, we use the memory mapping (MMap) technique [46], which
leverages the fundamental virtual memory capability found on all
modern operating systems to load the graph data into the virtual
memory space instead. Our algorithm computes traditional k-core
decomposition L times, where L is the number of layers in a graph.
Therefore, our algorithm runs in O(LE), since we can compute
a single k-core decomposition in linear time O(E) [16, 26]; how-
ever, our algorithm’s speed benefits from the guaranteed inequality
L ≤

√
|V |.

Our algorithm’s procedure is enumerated in steps below:
(1) Input: a graph G = (V ,E) represented using an edge list (i.e.

source and target pairs) encoded as a binary file.
(2) Pre-processing: each edge e ∈ E is reversed (i.e. e = (u,v)

becomes e = (v,u)) and appended to the original edge list. The
modified edge list is then sorted in increasing order. This is
done to access the neighbors of any vertex in a graph in O(1)
constant time for undirected graphs. The position of each edge
in the original edge list is tracked in the modified edge list.

(3) MMap: the modified edge list is memory mapped., i.e., treated
as if it were fully loaded into memory [46].

(4) Vertex degree: compute the degree of each vertex v ∈ V in a
single pass through the memory mapped edge list.

(5) k-core decomposition: the ParK [26] algorithm computes k-
cores of the graph. This assigns a core value to each vertex in
the graph.

(6) Compute highest graph layer: the maximum k-core is taken
as the current peel value p. All vertices that have core value
equal to the current peel value p are selected and their induced
subgraph is computed. This induced subgraph is the pth graph
layer.

(7) Remove graph layer: all edges in the pth graph layer are
labeled with the current peel value p and are logically deleted
(using a tombstone array) from the graph G and the degree of
their vertices is updated.

(8) Iterate: steps 5 though 7 iterate until all the edges |E | have
been logically deleted from the graph.

(9) Output: for each edge in the original edge list, the correspond-
ing label is recovered and the edge and corresponding peel
value label is written to disk.

(10) Metadata: somemetadata, such as the time taken to preprocess
the data and the time taken to run the edge decomposition is
written to a separate output log.

5.3 Large Graph Decomposition Experimental

Results

We report results on decomposing graphs using our algorithm. We
chose a wide range of of graphs, varying in both size (e.g. thousands
to hundreds of millions of edges) and domain (e.g. social, hyperlink,
and co-occurrence networks). We performed our experiments on a
single commodity computer equipped with an Intel i7 6-core proces-
sor clocked at 3.3GHz and 32GB of RAM. For each graph, the timing
result is averaged over 5 runs. All results are tabulated in Table 1,
which includes the graph, its vertex and edge count, the algorithm
compute time without preprocessing steps (e.g., data formatting),
the number of layers each graph produces, and the highest peel
value from the decomposition (since a graph with L layers does not
necessarily mean the L layers correspond to [1, 2, 3, . . . ,L]). We can
decompose graphs with millions of edges in seconds, and graphs
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with hundreds of millions of edges in minutes. To the best of our
knowledge, this is the first published timing results of this edge
decomposition algorithm.

6 SYSTEM DESIGN

Our edge decomposition is implemented in C++; however, we im-
prove performance by leveraging memory mapping [46] to handle
large graphs. The edge decomposition runs traditional k-core de-
composition L times, where L is the number of layers in the graph;
therefore, we use a recent multicore k-core decomposition algo-
rithm to achieve significant speedup [41].

For graph drawing, we avoid slow and computationally expen-
sive force-directed layouts and instead utilize a GPU-powered
Barnes-Hutt [14] approximation to achieve significant speedup
for computing original graph layouts [21]. Note that computing
the edge decomposition of our graph and the global graph layout
are independent computations. When both are completed, we pro-
cess their output together using Python to compute graph layer
measures, vertex clones, and format the data to be ingested by
Atlas. The visualization system is web-based and uses the lat-
est JavaScript libraries for graphics rendering (D3 [19] for 2D and
three.js (https://threejs.org) for 3D). Both the algorithm and Atlas
are open-sourced.

7 USER STUDY

7.1 Study Description

To better understand how Atlas may help graph data analysts,
we recruited three graph experts, who all work with graphs on a
weekly basis, to use Atlas to explore three graph datasets. The
three graph experts include:

P1: machine learning research scientist at Symantec Research
P2: cybersecurity researcher at NASA Jet Propulsion Lab
P3: software systems engineer at NASA Jet Propulsion Lab

All participants hold a PhD in computer science or mathematics.
Our participants’ average age was 33, and all three were male. Each
session lasted 90 minutes, and the participants were paid $10 for
their time. Participants completed an intro questionnaire to provide
demographic data and information about how they use graphs in
their work. Then, we introduced them to the edge decomposition
algorithm, including a walk-through of the example presented in
Figure 5. Next, each participant is guided through Atlas’s user
interface and demoed all available interactions. At the end of the
study, participants completed an exit questionnaire to provide feed-
back on Atlas. We recorded audio and video during each session.

Table 2 summarizes the three graphs: a Yelp user-user review
network [39] where two users are connected if they both reviewed
the same 5 venues over 9 days; an SEC traders graph [60] where two
traders are connected if they traded more than 5 times during the
same day; and the GloVe word embedding graph described earlier in
Illustrative Scenario. We chose these three graph datasets because
they contain interesting structures (e.g., traders whose transactions
often coincide suspiciously in the SEC graph) and encourage inves-
tigative behavior in our participants. Thus, the participants’ goal
was to analyze the three graphs using Atlas to spot any patterns
that they would consider as interesting, mimicking what they may

do in their own work. They were free to use any features of Atlas
to allow for more natural use of the system.

7.2 Key Observations

We summarize our key observations from interacting with the three
participants into three themes, each highlighting howAtlas helped
them with their exploration.

3D for overview, 2D for details. Upon displaying a new graph
in Atlas, all three participants used the 3D representation to de-
velop an overview and build intuition about the graph structure.
For example, they commonly used the “Show All” button to show
all layers; and the “Height” slider to place layers into a 3D structure,
to help them see multiple perspectives of the decomposition. After
a few minutes of exploring the 3D representation, all participants
gradually transitioned to inspecting the Ribbon and interacting
with graph layers in the Layers view. Participants used the Ribbon
as both a summarization of the graph and as a mechanism to iden-
tify potentially interesting graph layers for detailed investigation.
While interacting with the Layers view, all participants used the
hovering interaction to show a vertex’s immediate neighbors often.
Participants would also re-draw some selected layers, which is par-
ticularly helpful for larger graphs like the GloVe word embedding
graph, where the re-drawn layout helps better reveal structures
that the decomposition found. P3 had more interactions total than
the other two participants, making most use of the path feature to
build shortest-path-net representations of each layer. P2 was more
specific about which vertices to explore, only using certain features
decisively instead of the more causal exploration demeanor of P3.

In summary, P1 and P3 spent a majority of their sessions ex-
ploring the graph layers in 2D, e.g., P1 would drag the Ribbon to
the left hand side of the UI to give more screen real estate to the
Layers view; however, P2 alternated between the 3D and 2D views
during his entire session. P1 further attributed his actions for us-
ing the 3D representation as an overview and the Layers view for
more fine-grained exploration by referencing the well-known Vi-
sual Information-Seeking Mantra [59]: “overview first, zoom and
filter, then details on demand.”

Identifying and linking meaningful graph substructures. While
the participants analyzed the structure of each layer independently,
they also frequently toggled the vertex clones to see which vertices
in a particular layer existed elsewhere in the graph. Each participant
made thorough use of cross-layer exploration, by entering a new
layer from a particular vertex’s clone via an original layer (as an
example, see Figure 1C). P3 said: “I thought it was extremely useful
to [move] from one layer to another. Most of my time using the system
was exploring one layer and then finding the clones from that layer
to the other layers. The system presented this very well.”

P1 said syncing the position of a vertex and its clones across
multiple layers was useful for identifying how a single vertex could
play different roles in the graph. This was particularly evident dur-
ing P3’s exploration of the GloVe word embedding, where he found
multiple semantically related connected components of words (com-
ponents included types of wine, British towns, and medical disci-
plines). As he was forming higher level concepts, he said: “I could
spend all day doing this.”

https://threejs.org
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Table 2: Participant graph data. The three graphs the participants explored in the user study.

Graph Graph Meaning Vertices Edges Layers Highest Peel

Yelp Reviews Network Vertices: Yelp reviewers. Edges: connect two reviewers
if both review the same 5 venues over 9 days 996 1,189 6 10

SEC Insider Trading Graph Vertices: traders at companies. Edges: connect two traders
if their trades (purchases) coincide with each other on 5 or more days 1,678 2,631 12 14

GloVe Word Embedding Graph Vertices: words. Edges: connect two words
if the angular distance between their word vectors is less than 0.9 65,870 213,526 31 40

Application to anomaly detection. When analyzing the Yelp net-
work, all three participants came to the same conclusion that likely
the top and most dense layers of the graph showed potential for
unusual reviewer activity, since finding a quasi-clique of 12 review-
ers who all have reviewed at least the same 5 venues over 9 days
seems highly improbable. This could indicate a fake Yelp review
scheme where multiple accounts are assigned, or even paid, to re-
view particular venues. Besides looking at the topmost layer in each
graph, each participant also used the “Clones” toggle to identify
any vertices that had no clones, suggesting that these vertices are
suspicious and are worth investigating. For example, P3 discovered
that the top most layer in the SEC trading network (layer 14) is a
complete 15-clique (Figure 6, left), but visualizing this layer’s clones
reveals that 8 of the vertices have clones that form a star graph in
layer 1. Most interestingly, this star’s hub in layer 1 is not a clone
(Figure 6, right). Together, this means that of the 15 traders who
all trade with every other trader (layer 14), 8 of them also trade
with one other less-connected trader. P2 was particularly enticed
by using Atlas for these anomaly detection-like tasks, and wrote
in his exit questionnaire: “I like the fact that the analysis (using a
combination of vertex clones and layers) naturally reveals potentially
anomalous substructures and vertices. This is highly useful from a
cybersecurity perspective.”

SEC Insider Trading Graph
Layer 14

complete 15-clique
Layer 1 (component)

star graph

All vertices with clones in layer 14
form a star in layer 1, whose hub

only exists in layer 1.

hubhub
clonesclones

Figure 6: Identifying suspicious trading. A participant found
that the top most layer in the SEC insider trading graph (layer 14,
left) is a complete 15-clique, but when visualizing this layer’s clones
(red vertices) it is revealed that 8 of the vertices have clones that
form a star graph in layer 1 (right). Most interestingly, this star’s
hub (blue vertex) in layer 1 is not a clone.

7.3 User Feedback for System Improvements

Overall, all participants recorded in their exit questionnaires that
they enjoyed using the system, it was well-designed, and it pre-
sented the data from the decomposition effectively. After the study,
we asked the participants to critique our approach and suggest
improvements.

More analytic features for deployment. P1 suggested that if Atlas
were to be deployed that it could benefit from the inclusion of more
graph analytic features (e.g., incorporating vertex metadata into
the system), which could better assist graph data analysts when
trying to take action upon an interesting layer or vertex clone. P3
similarly suggested an interaction for selecting arbitrary connected
components in any layer to display component specific measures
and information.

Suggesting interesting layers to investigate. However, the most
interesting improvement suggested by P2 points to potential future
work; he suggested that Atlas itself should recommend the most
peculiar layers based on some edge decomposition-specific notion
of “interestingness” to explore first. Right now, Atlas requires a
user to glean this notion by inspecting each layer’s glyph in the
Ribbon and reasoning about it, e.g., how dark the bar is (indicating a
high clustering coefficient) or how close the clone tick is to the inner
bar (indicating how many of the vertices are clones). Lastly, two
participants desired to see how the discovered graph layers better
compare to standard graphmotifs, suggesting that comparing layers
and standard structures could enable analysts to explore massive
graphs more quickly and effectively.

8 DISCUSSION AND FUTUREWORK

There are multiple promising directions of future research for pair-
ing edge decompositions and interactive data visualization together
to further improve graph exploration.

Dynamic graph decomposition visualization. All graphs decom-
posed and visualized in this work are non-dynamic graphs. Apply-
ing the edge decomposition to time-varying and dynamic graphs to
visualize how graph layers change given the addition or removal of
particular edges or vertices could reveal deeper insight into impor-
tant structure within dynamic graphs. An interactive visualization
system like Atlas for dynamic edge decompositions could also
motivate novel interactions and visualizations for how to make
sense of a changing decomposition over time.
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Further scalability improvements. Computationally, while our
edge decomposition algorithm is fast, and scales to graphs with hun-
dreds of millions of edges (e.g., theWikipedia Links (English) hyper-
link network with 12M vertices and 378M edges takes 2,237 seconds
to decompose), it could be further improved by leveraging GPUs
for computing peel values. While our decomposition partitions a
graph into smaller subgraph layers, we can further improve visual
scalability of our system by adopting visual reduction techniques
described in Related Works as additional options for exploring a
single graph layer, such as hierarchical super-noding [4, 10, 11],
edge bundling [5, 24, 36], and graph summarizations and motif
abstractions [27, 42, 68]. There is also potential to incorporate rele-
vance based exploration techniques for exploration within a single
large graph layer, such as [23, 33, 55].

New graph representations. Given two graph layers li and lj with
different peel values whose vertices intercept one another (i.e.,
layer li has at least one clone in lj ), can we efficiently compute
the vertex clone intersection of the two layers? Once computed,
is it best to visualize this intersection of the vertex clones in 2D
or possibly using a 3D volumetric representation to generate new,
anthropomorphic representations of graphs? This could potentially
aid with the task of comparing the underlying structure of large
graphs that evolve over time.

9 CONCLUSION

We introduce Atlas: an interactive graph exploration system that
wields a fast and scalable edge decomposition algorithm. Atlas
introduces a new approach for exploring large graphs that simulta-
neously reveals (1) peculiar subgraph structure discovered through
the decomposition’s layers, and (2) possible vertex roles in link-
ing such subgraph patterns across layers. We presented the results
from a user study with three graph experts and highlighted some of
the findings made possible by Atlas when applied to graphs from
multiple domains. Atlas runs in-browser, and is open sourced.
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