3D Printing in Topology

2014 UGA CURO Symposium

Fred Hohman fred.hohman@gmail.com

Dr. David Gay dgay@math.uga.edu

a plant and and Sin Strang

Topics.

- Theory
- Generating 3D Models
- 3D Printing
- Results and Future Research
- Final Remarks and Questions

Theory.

Consider a function

$$\mathbb{R}^4 = \mathbb{C}^2 \to \mathbb{C} = \mathbb{R}^2$$
$$(u, v) \to u^2 - v^3$$

- This function's zero-set generates a trefoil knot through infinity
- Construction: take the inverse image of sets in $\mathbb{C}=\mathbb{R}^2$
- Example:

$$P^{-1}(\{0\}) = \{(u,v)|u^2 = v^3\}$$

Theory.

- Stereographic Projection: Mapping from the sphere in 3D to the plane in 2D
- Now generalize: project from the "sphere" in 4D ($\mathbb{C}^2 = \mathbb{R}^4$) onto \mathbb{R}^3
- Open-book decomposition: imagine our knot is the spine of book, what does a page look like inside?

Generating 3D Models.

- **ST**ereoLithography files (.stl) describe surface geometry of 3D objects
- Software: CAD, Mathematica, Meshlab, Blender, etc.
- **Resolution**: quality of model
 - more triangles + more vertices = higher resolution
 - Achieved in Mathematica via PlotPoints

Generating 3D Models—Trefoil Knot. Created in Mathematica.

Generating 3D Models—Trefoil Knot + Page. Created in Mathematica.

3D Printing.

- "Process of making a threedimensional solid object of virtually any shape from a digital model." -Wikipedia
- Makerbot Replicator 2
- Additive Layering: printer extrudes melted plastic in thin (100 micron, 0.1 millimeter) layers and builds object from

3D Printing.

- Controls:
 - Rafts and Supports
 - Infill percentage (how solid/hollow the object is)
 - Layer Height (100 microns, 0.1 millimeters)
 - Extruder temperature (~230° C, ~446° F)
 - Extruder speed when printing/traveling (90 mm/s, 150 mm/s)

Results and Future Research.

- Posted on Thingiverse
 - Makerbot's website for digital design file sharing
 - Currently has ____ views and ____ downloads
- Determining best way to cut pages to build knots
- Print more complicated knots with more pages

Final Remarks and Questions.

- Tinkercad: free 3D modeling program that runs in the browser (Chrome)—no downloading required!
 - Short tutorial (~10 minutes)
 - Easiest way to begin to model
- \cdot Thingiverse
- 3D printing technology is rapidly growing

Final Remarks and Questions.

Questions?

Fred Hohman

fred.hohman@gmail.com fredhohman.com

Dr. David Gay dgay@math.uga.edu

References. (online)

- Mandalland Blogspot Triangles
- Wikipedia-3D Printing
- Thingiverse—Stereographic
 Projection
- Makerbot
- Atomic Spin—Replicator 2 Issues